Monitoring insects of different species to understand the factors affecting their diversity and decline is a major challenge. Laser remote sensing and spectroscopy offer promising novel solutions to this. Coherent scattering from thin wing membranes also known as wing interference patterns (WIPs) have recently been demonstrated to be species specific. The colors of WIPs arise due to unique fringy spectra, which can be retrieved over long distances. To demonstrate this, a new concept of infrared (950-1650 nm) hyperspectral lidar with 64 spectral bands based on a supercontinuum light source using ray-tracing and 3D printing is developed. A lidar with an unprecedented number of spectral channels, high signal-to-noise ratio, and spatio-temporal resolution enabling detection of free-flying insects and their wingbeats. As proof of principle, coherent scatter from a damselfly wing at 87 m distance without averaging (4 ms recording) is retrieved. The fringed signal properties are used to determine an effective wing membrane thickness of 1412 nm with ±4 nm precision matching laboratory recordings of the same wing. Similar signals from free flying insects (2 ms recording) are later recorded. The accuracy and the method's potential are discussed to discriminate species by capturing coherent features from free-flying insects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214245PMC
http://dx.doi.org/10.1002/advs.202207110DOI Listing

Publication Analysis

Top Keywords

hyperspectral lidar
8
free-flying insects
8
wing
5
remote nanoscopy
4
nanoscopy infrared
4
infrared elastic
4
elastic hyperspectral
4
lidar monitoring
4
insects
4
monitoring insects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!