The peptidase neprilysin modulates glucose homeostasis by cleaving and inactivating insulinotropic peptides, including some produced in the intestine such as glucagon-like peptide-1 (GLP-1). Under diabetic conditions, systemic or islet-selective inhibition of neprilysin enhances beta-cell function through GLP-1 receptor (GLP-1R) signaling. While neprilysin is expressed in intestine, its local contribution to modulation of beta-cell function remains unknown. We sought to determine whether acute selective pharmacological inhibition of intestinal neprilysin enhanced glucose-stimulated insulin secretion under physiological conditions, and whether this effect was mediated through GLP-1R. Lean chow-fed Glp1r+/+ and Glp1r-/- mice received a single oral low dose of the neprilysin inhibitor thiorphan or vehicle. To confirm selective intestinal neprilysin inhibition, neprilysin activity in plasma and intestine (ileum and colon) was assessed 40 minutes after thiorphan or vehicle administration. In a separate cohort of mice, an oral glucose tolerance test was performed 30 minutes after thiorphan or vehicle administration to assess glucose-stimulated insulin secretion. Systemic active GLP-1 levels were measured in plasma collected 10 minutes after glucose administration. In both Glp1r+/+ and Glp1r-/- mice, thiorphan inhibited neprilysin activity in ileum and colon without altering plasma neprilysin activity or active GLP-1 levels. Further, thiorphan significantly increased insulin secretion in Glp1r+/+ mice, whereas it did not change insulin secretion in Glp1r-/- mice. In conclusion, under physiological conditions, acute pharmacological inhibition of intestinal neprilysin increases glucose-stimulated insulin secretion in a GLP-1R-dependent manner. Since intestinal neprilysin modulates beta-cell function, strategies to inhibit its activity specifically in the intestine may improve beta-cell dysfunction in type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282919 | PMC |
http://dx.doi.org/10.1210/endocr/bqad055 | DOI Listing |
J Biosci Bioeng
January 2025
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:
The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.
View Article and Find Full Text PDFCancer Treat Rev
January 2025
Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy. Electronic address:
Immune-based combinations are the cornerstone of the first-line treatment of metastatic renal cell carcinoma patients, leading to outstanding outcomes. Nevertheless, primary resistance and disease progression is a critical clinical challenge. To properly address this issue, it is pivotal to understand the mechanisms of resistance to immunotherapy and tyrosine kinase inhibitors, that tumor eventually develop under treatment.
View Article and Find Full Text PDFJ Adv Res
January 2025
Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI 36310 Vigo, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21 39011 Santander, Spain. Electronic address:
Background: Flavonoids are naturally occurring dietary phytochemicals with significant antioxidant effects aside from several health benefits. People often consume them in combination with other food components. Compiling data establishes a link between bioactive flavonoids and prevention of several diseases in animal models, including cardiovascular diseases, diabetes, gut dysbiosis, and metabolic dysfunction-associated steatotic liver disease (MASLD).
View Article and Find Full Text PDFGenes Dev
December 2024
Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;
The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Centro Universitário Faculdade de Medicina do ABC (FMABC), São Paulo, Santo André, Brazil.
Background: There is no strong evidence demonstrating whether or not aerobic exercise in conjunction with resistance exercise improves metabolic diabetes markers in postmenopausal women.
Objective: To evaluate the effect of aerobic exercise and resistance training on metabolic markers in postmenopausal women with type 2 diabetes mellitus (T2DM) by means of a systematic review and meta-analysis.
Methods: The searches were completed using EMBASE, MEDLINE/PubMed, Scopus and Web of Science databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!