Microplastics pollute the marine environment and pose a greater risk to marine organisms. The microplastics were observed in the guts of the 12 species, which varied from 0.00 to 1.80 ± 1.19 particles /individual. Most of the microplastics were fibre shaped, 0.5-1 mm sized, blue-coloured, and polyethylene polymers. The abundance of the microplastics was higher for benthic species (0.66 ± 0.13 particles/ individual) than the pelagic species (0.53 ± 0.11 particles/individual), with no significant difference (p > 0.05). According to their feeding habits and trophic level, significantly the microplastics were abundant in the herbivores (1.23 ± 0.61 particles/individual) and quaternary consumers (0.76 ± 0.16 particles/individual), respectively. The present study suggests that microplastic ingestion in commercially important species was influenced by their feeding habits irrespective of their habitat and length and weight. In addition to this, biomagnification of the microplastics (Trophic Magnification Factor, TMF = 1.02) was also observed in the commercially important species with increasing trophic level. This further indicates that the trophic level can serve as the pathway for the transfer of microplastics from lower trophic level organisms to higher trophic level organisms. The present study concludes that the occurrence of biomagnification of microplastics and the pollutants absorbed by them might harm the commercially important species from the Thoothukudi region.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11049-4DOI Listing

Publication Analysis

Top Keywords

trophic level
20
commercially species
16
species thoothukudi
8
microplastics
8
feeding habits
8
biomagnification microplastics
8
level organisms
8
species
7
trophic
6
level
5

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Background: Astrocytes secrete neuromodulators, neurohormones, trophic factors, and synaptogenesis modulators. Trophic factors regulate various cellular processes including synaptic transmission. Astrocytes have critical roles in synaptic development and plasticity.

View Article and Find Full Text PDF

Artificial reefs (ARs) are an important means of improving marine ecological environments and promoting the sustainable use of marine biological resources. After AR deployment, biological communities undergo dynamic changes as species succession and shifts in community structure. As the most sensitive frontier affected by the environment, the complex and dynamic changes of microbial communities play a crucial role in the health and stability of the ecosystem.

View Article and Find Full Text PDF

Biogeochemical patterns in prey species reveal complex mercury exposure pathways from the environment to Aleutian Steller sea lions.

Mar Pollut Bull

December 2024

Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.

Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.

View Article and Find Full Text PDF

Potential feeding sites for seabirds and marine mammals reveal large overlap with offshore wind energy development worldwide.

J Environ Manage

December 2024

Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain.

Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species.

View Article and Find Full Text PDF

Climate change is shifting the timing of organismal life-history events. Although consequential food-web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long-term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!