Purpose: Adipokines produced by adipose tissue have been found to be involved in the pathophysiology of metabolic and cardiovascular diseases. We aimed to investigate the relationships of resistin, retinol-binding protein 4 (RBP4) and adiponectin produced by epicardial adipose tissue with coronary artery disease (CAD) and cardiac structure and function.
Methods: Forty-one non-diabetic males scheduled for cardiothoracic surgery were examined. Anthropometric measurements, echocardiography, coronary angiography, and blood analysis were performed preoperatively. We measured the serum levels of resistin, RBP4, and adiponectin and their mRNA expression in thoracic subcutaneous adipose tissue and two epicardial adipose tissue samples, one close to left anterior descending artery (LAD) (resistin-LAD, RBP4-LAD, adiponectin-LAD), and another close to the right coronary artery (RCA) (resistin-RCA, RBP4-RCA, adiponectin-RCA).
Results: Left ventricular (LV) ejection fraction correlated negatively with adiponectin-LAD (rho = - 0.390, p = 0.025). The ratio of early to late diastolic transmitral flow velocity, as an index of LV diastolic function, correlated negatively with resistin-LAD (rho = - 0.529, p = 0.024) and RBP4-LAD (rho = - 0.458, p = 0.049). There was no difference in epicardial adipose tissue mRNA expression of resistin, RBP4, and adiponectin between individuals with CAD and those without CAD. When we compared the individuals with CAD in the LAD with those without CAD in the LAD, there was no difference in resistin-LAD, RBP4-LAD, and adiponectin-LAD. There was no difference in resistin-RCA, RBP4-RCA, and adiponectin-RCA between the individuals with CAD in the RCA and those without CAD in the RCA.
Conclusion: Elevation of epicardial adipose tissue mRNA expression of adiponectin was associated with LV systolic dysfunction, while that of both resistin and RBP4 was linked to LV diastolic dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209261 | PMC |
http://dx.doi.org/10.1007/s42000-023-00447-5 | DOI Listing |
Tissue Eng Part A
January 2025
Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.
View Article and Find Full Text PDFElife
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States.
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
January 2025
Division of Plastic Surgery, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFAdipocyte
December 2025
Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!