Multi-phase composite synchronization of three vibrators in a space far-resonant vibration system.

ISA Trans

School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China; Oil and Gas Equipment Technology Sharing and Service Platform of Sichuan Province, Southwest Petroleum University, Chengdu 610500, China.

Published: July 2023

To improve the problem that self-synchronization and control synchronization of vibration systems are respectively restricted by their inherent characteristics and product cost, by combining them a multi-phase composite synchronization scheme is proposed for space far-resonant vibration system actuated by three vibrators. Based on the established mathematical model and sliding mode control (SMC) algorithm, controller of one vibrator is designed to implement the multi-phase control synchronization. Then self-synchronization mechanism of the other two vibrators is analyzed through small parameter average method and Routh-Hurwitz criterion. Besides, necessary calculation and simulation cases in multi-phase composite synchronization state are further conducted. Research results indicate that the multi-phase composite synchronization of three vibrators can be carried out in stable operation regions, but chaotic behaviors, since severe mass asymmetry of the eccentric rotors (ERs), will be induced when the phase differences (PDs) between two coaxial vibrators are controlled in -1.99∼-1.67 and 1.63∼2.1 (rad), and the controlled PDs around -0.4 (rad) should be avoid to ensure a stronger synchronization ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2023.03.012DOI Listing

Publication Analysis

Top Keywords

multi-phase composite
16
composite synchronization
16
three vibrators
12
synchronization three
8
space far-resonant
8
far-resonant vibration
8
vibration system
8
control synchronization
8
synchronization
7
multi-phase
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!