New insecticide modes of action are needed for insecticide resistance management strategies. The number of molecular targets of commercial herbicides and insecticides are fewer than 35 for both. Few commercial insecticide targets are found in plants, but ten targets of commercial herbicides are found in insects. For several of these commonly held targets, some compounds kill both plants and insects. For example, herbicidal inhibitors of p-hydroxyphenylpyruvate dioxygenase are effective insecticides on blood-fed insects. The glutamine synthetase-inhibiting herbicide glufosinate is insecticidal by the same mechanism of action, inhibition of glutamine synthetase. These and other examples of shared activities of commercial herbicides with insecticides through the same target site are discussed. Compounds with novel herbicide targets shared by insects that are not commercialized as pesticides (such as statins) are also discussed. Compounds that are both herbicidal and insecticidal can be used for insect pests not associated with crops or with crops made resistant to the compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2023.105340 | DOI Listing |
Toxics
December 2024
Tropical Herpetology Lab, Graduate Program in Zoology, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil.
Brazil is one of the largest consumers of herbicides in the world, and glyphosate-based herbicides (e.g., Roundup) are commonly applied in cropland.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Soil Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
Potato () production requires effective nutrient and weed management strategies to enhance tuber yield and quality while minimizing the environmental impact of chemical inputs. This study investigated the effects of various weed and nutrient management practices on potato tuber yield, yield components, and quality traits. The experiments were conducted over two years (2019-2020) at the University of Kurdistan's research farm in the Dehgolan Plain, using a split-plot based on randomized complete block design with four replicates.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Seed Industry Research Centre, Christchurch, New Zealand.
Background: Ryegrass (Lolium spp.) is a key forage providing a $14 billion contribution to New Zealand's gross domestic product (GDP). However, ryegrass can also act as a weed and evolve resistance to herbicides used for its control.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Syngenta, Jealott's Hill International Research Centre, Bracknell, UK.
Background: Herbicide cross-resistance is of increasing concern because it compromises the effectiveness of both existing and new chemical options. However, a common misconception is that if a weed population shows dose-response shifts to two herbicides, it is cross-resistant to both. The possibility that individual plants may possess different resistance mechanisms is often overlooked.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:
Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!