Vitamin D receptor (VDR) is an essential transcription factor (TF) synthesized in different cell types. We hypothesized that VDR might also act as a mitochondrial TF. We conducted the experiments in primary cortical neurons, PC12, HEK293T, SH-SY5Y cell lines, human peripheral blood mononuclear cells (PBMC) and human brain. We showed that vitamin D/VDR affects the expression of mitochondrial DNA (mtDNA) encoded oxidative phosphorylation (OXPHOS) subunits. We observed the co-localization of VDR with mitochondria and the mtDNA with confocal microscopy. mtDNA-chromatin-immunoprecipitation and electrophoretic mobility shift assays indicated that VDR was able to bind to the mtDNA D-loop site in several locations, with a consensus sequence "MMHKCA." We also reported the possible interaction between VDR and mitochondrial transcription factor A (TFAM) and their binding sites located in close proximity in mtDNA. Consequently, our results showed for the first time that VDR was able to bind and regulate mtDNA transcription and interact with TFAM even in the human brain. These results not only revealed a novel function of VDR, but also showed that VDR is indispensable for energy demanded cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2023.109322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!