Inflammatory coagulopathy is resulted from endothelial dysfunction and platelet hyperactivation in inflammatory diseases. In this study, the effects of baicalin, an active component of the traditional Chinese medicine Huangqin, on inflammatory coagulopathy were observed both in vivo and in vitro. In LPS-induced rats, baicalin ameliorated coagulation indexes, inhibited platelet hyperactivation and decreased the expression of thrombospondin-1 (TSP-1) in vessels. In cultured endothelial cells, baicalin decreased the expression of TSP-1 and collagen as well as the TNF-α-induced increase in the levels of TSP-1 and ICAM-1. Baicalin could significantly decrease the platelet adhesion on endothelial cells treated with TNF-α. Baicalin also could inhibit the increase of ROS level and the activation of the NLRP3/Caspase-1/GSDMD pathway in TNF-α-induced endothelial cells. Furin was found to be the direct target of baicalin in HUVECs. Knockdown of Furin using siRNA could ameliorate the effects of baicalin on the activation of TGFβ1/Smad3 pathway, TSP-1 expression and the adhesion of platelets on TNF-α-treated endothelial cells. At the same time, baicalin inhibited platelet aggregation induced by collagen or combination of collagen and TSP-1 peptide. Collagen-induced Ca mobilization, ROS level increase, AKT1 phosphorylation, platelet degranulation and TSP-1 release could be all inhibited by baicalin. In all, baicalin ameliorated endothelial dysfunction by inhibiting Furin/TGFβ1/Smad3/TSP-1 pathway and also ameliorated platelet activation by inhibiting AKT-related pathway. Both the inhibiting effects of baicalin on endothelial dysfunction and platelet activation might contribute to its ameliorating effects on inflammatory coagulopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2023.175674 | DOI Listing |
PLoS One
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
UCL Institute of Ophthalmology, University College London, London, UK.
Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.
Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.
Adv Sci (Weinh)
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!