Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Surface-enhanced Raman spectroscopy (SERS) is an efficient technique which has been used for the analysis of filtrate portions of serum samples of Hepatitis B (HBV) and Hepatitis C (HCV) virus.
Objectives: The main reason for this study is to differentiate and compare HBV and HCV serum samples for disease diagnosis through SERS. Hepatitis B and hepatitis C disease biomarkers are more predictable in their centrifuged form as compared in their uncentrifuged form. For differentiation of SERS spectral data sets of hepatitis B, hepatitis C and healthy person principal component analysis (PCA) proved to be a helpful. Centrifugally filtered serum samples of hepatitis B and hepatitis C are clearly differentiated from centrifugally filtered serum samples of healthy individuals by using partial least square discriminant analysis (PLS-DA).
Methodology: Serum sample of HBV, HCV and healthy patients were centrifugally filtered to separate filtrate portion for studying biochemical changes in serum sample. The SERS of these samples is performed using silver nanoparticles as substrates to identify specific spectral features of both viral diseases which can be used for the diagnosis and differentiation of these diseases. The purpose of centrifugal filtration of the serum samples of HBV and HCV positive and control samples by using filter membranes of 50 KDa size is to eliminate the proteins bigger than 50 KDa so that their contribution in the SERS spectrum is removed and disease related smaller proteins may be observed. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) are statistical tools which were used for the further validation of SERS.
Results: HBV and HCV centrifugally filtered serum sample were compared and biomarkers including (uracil, phenylalanine, methionine, adenine, phosphodiester, proline, tyrosine, tryptophan, amino acid, thymine, fatty acid, nucleic acid, triglyceride, guanine and hydroxyproline) were identified through PCA and PLS-DA. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were used as a multivariate data analysis tool for the diagnosis of the characteristic SERS spectral features associated with both types of viral diseases. For the classification and differentiation of centrifugally filtered HBV, HCV, and control serum samples, Principal component analysis is found helpful. Moreover, PLS-DA can classify these two distinct sets of SERS spectral data with 0.90 percent specificity, 0.85 percent precision, and 0.83 percent accuracy.
Conclusions: Surface enhanced Raman spectroscopy along with chemometric analysis like PCA and PLS-DA have been successfully differentiated HBV and HCV and healthy individuals' serum samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2023.103532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!