The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice.

Behav Brain Res

Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China. Electronic address:

Published: May 2023

Depression is associated with intestinal dysbiosis. Venlafaxine is a commonly used antidepressant in clinical practice as a serotonin and noradrenaline reuptake inhibitor. However, its effects on gut bacteria in depression remain unclear. Here, we established a mouse model of depression induced by chronic unpredictable mild stress (CUMS), and investigated the alterations of venlafaxine on the gut microbiota and potential key bacteria. Our data show that venlafaxine exerts antidepressant effects by restoring the serotonin (5-HT) system and glutamate (Glu) levels in CUMS mice. Moreover, we revealed that venlafaxine altered the diversity of gut bacteria in CUMS mice, and at genus level, Blautia, Oscillibacter, Tyzzerella, Butyricicoccus, and Enterorhabdus are the key bacteria responsible for venlafaxine-ameliorated depression in mice. Among these potential key bacteria, Blautia, Oscillibacter, and Butyricicoccus are correlated significantly with the 5-HT and 5-hydroxyindoleacetic acid levels; while Tyzzerella is correlated markedly with Glu levels. We further show that venlafaxine affected multiple functional metabolic pathways of gut bacteria in mice with CUMS-induced depression. Our results suggest that venlafaxine possibly ameliorates depression via modulating gut bacteria, and found the potential targets of its antidepressant effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2023.114399DOI Listing

Publication Analysis

Top Keywords

gut bacteria
16
key bacteria
12
gut microbiota
8
chronic unpredictable
8
unpredictable mild
8
depression mice
8
potential key
8
antidepressant effects
8
glu levels
8
cums mice
8

Similar Publications

The composition of the gut microbiome is determined by a complex interplay of diet, host genetics, microbe-microbe interactions, abiotic factors, and stochasticity. Previous studies have demonstrated the importance of host genetics in community assembly of the gut microbiome and identified a central role for DBL-1/BMP immune signaling in determining the abundance of gut . However, the effects of DBL-1 signaling on gut bacteria were found to depend on its activation in extra-intestinal tissues, highlighting a gap in our understanding of the proximal factors that determine microbiome composition.

View Article and Find Full Text PDF

Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal .

mBio

January 2025

Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.

View Article and Find Full Text PDF

The emergence and global spread of carbapenem-resistant complex species present a pressing public health challenge. Carbapenem-resistant spp. cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults.

View Article and Find Full Text PDF

A critical review on effects of artificial sweeteners on gut microbiota and gastrointestinal health.

J Sci Food Agric

January 2025

Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China.

Artificial sweeteners have emerged as popular alternatives to traditional sweeteners, driven by the growing concern over sugar consumption and its associated rise in obesity and metabolic disorders. Despite their widespread use, the safety and health implications of artificial sweeteners remain a topic of debate, with conflicting evidence contributing to uncertainty about their long-term effects. This review synthesizes current scientific evidence regarding the impact of artificial sweeteners on gut microbiota and gastrointestinal health.

View Article and Find Full Text PDF

: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. : Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!