A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Boosting elimination of sunscreen, Tetrahydroxybenzophenone (BP-2), from water using monopersulfate activated by thorny NanoBox of Co@C prepared via the engineered etching strategy: A comparative and mechanistic investigation. | LitMetric

AI Article Synopsis

  • The study investigates the degradation of 2,2',4,4'-Tetrahydroxybenzophenone (BP-2), a common UV-blocking sunscreen ingredient often overlooked, using an advanced oxidation process (AOP) designed for emerging contaminants.
  • A new cobalt-based catalyst, TNBCC, is created by immobilizing cobalt nanoparticles onto carbon substrates, which enhances its effectiveness in activating monopersulfate (MPS) for degrading BP-2.
  • The research finds that TNBCC significantly outperforms other catalysts, thanks to its unique nanostructure and superior properties, making it an effective choice for treating water contaminated with BP-2.

Article Abstract

As sunscreens, benzophenones (BPs), are regarded as emerging contaminants, most of studies are focused on removal of 2-hydroxy-4-methoxybenzophenone (BP-3), which, however, has been employed for protecting skin. Another major class of BPs, which is used to prevent UV-induce degradation in various products, is completely neglected. Thus, this present study aims to develop a useful advanced oxidation process (AOP) for the first time to eliminate such a class of BP sunscreens from contaminated water. Specifically, 2,2',4,4'-Tetrahydroxybenzophenone (BP-2) would be focused here as BP-2 is intensively used in perfumes, lipsticks, and plastics for preventing the UV-induced degradation. As monopersulfate (MPS)-based AOP is practical for degrading emerging contaminants, a facile nanostructured cobalt-based material is then developed for maximizing catalytic activities of MPS activation by immobilizing Co nanoparticles onto carbon substrates. In particular, ZIF-67 is employed as a template, followed by the etching and carbonization treatments to afford the thorny nanobox of Co@C (TNBCC) with the hollow-nanostructure. In comparison to the solid (non-hollow) nanocube of Co@C (NCCC) from the direct carbonization of ZIF-67, TNBCC possesses not only the excellent textural features, but also superior electrochemical properties and highly reactive surfaces, making TNBCC exhibit the significantly higher catalytic activity than NCCC as well as CoO in activating MPS to degrade BP-2. Mechanisms of BP-2 degradation are also elucidated and ascribed to both radical and non-radical routes. These advantageous features make TNBCC a useful catalyst of activating MPS in BP-2 degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138469DOI Listing

Publication Analysis

Top Keywords

thorny nanobox
8
nanobox co@c
8
emerging contaminants
8
activating mps
8
bp-2 degradation
8
bp-2
6
boosting elimination
4
elimination sunscreen
4
sunscreen tetrahydroxybenzophenone
4
tetrahydroxybenzophenone bp-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: