A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules. | LitMetric

Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules.

Mol Cell Neurosci

Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany. Electronic address:

Published: June 2023

Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis could dynamically modulate the copy numbers of plasticity-related molecules in synapses. Subsequently, theoretical models were designed to understand the interaction of these processes better and to explain how local synaptic plasticity cues can up or down-regulate the molecular copy numbers across synapses. In this review, we discuss the recent advances in experimental techniques and computational models to highlight how these complementary approaches can provide insight into molecular cross-talk across synapses, ultimately allowing us to develop biologically-inspired neural network models to understand brain function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274545PMC
http://dx.doi.org/10.1016/j.mcn.2023.103846DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
8
advances experimental
8
experimental techniques
8
copy numbers
8
computational insights
4
insights mrna
4
mrna protein
4
protein dynamics
4
dynamics underlying
4
underlying synaptic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!