The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2023.213390 | DOI Listing |
Heliyon
July 2024
Deakin Health Economics, Deakin University, Melbourne, Victoria, Australia.
Current research into the digital healthcare landscape reveals a significant gap in understanding the perspectives of consumers with lived health experiences on sharing their health data for research purposes. Despite the substantial value that such shared information can bring to healthcare research, policy development, and system improvement, insights into the attitudes and willingness of these consumers towards data sharing remain sparse. This study seeks to fill this gap, exploring the unique views of these individuals and assessing the potential benefits their data sharing could contribute to healthcare.
View Article and Find Full Text PDFHead Face Med
January 2025
Department of Oral and Maxillofacial Surgery, Heinrich Heine University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
Background: Virtual surgical planning for orthognathic surgery typically relies on two methods for intraoperative plan transfer: CAD/CAM occlusal splints and patient-specific implants (PSI). While CAD/CAM splints may offer limited accuracy, particularly in the vertical dimension, PSIs are constrained by higher costs and extended preparation times. Surgical navigation has emerged as a potential alternative, but existing protocols often involve invasive registration or lack transparent evaluation.
View Article and Find Full Text PDFPLoS One
January 2025
NWL Patient Safety Research Collaboration, Institute of Global Health Innovation, Imperial College London, London, United Kingdom.
Background: Virtual consultations are being increasingly incorporated into routine primary care, as they offer better time and geographical flexibility for patients while also being cost-effective for both patients and service providers. At the same time, concerns have been raised about the extent to which virtual care is safe for patients. As of now, there is no validated methodology for evaluating the safety nuances and implications of virtual care.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer-aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer-aided diagnosis (CADx) pipelines.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!