Malaria rapid diagnostic tests (RDTs) are dominated by products which use histidine-rich protein 2 (HRP2) to detect Plasmodium falciparum. The emergence of parasites lacking the pfhrp2 gene can lead to high rates of false-negative results amongst these RDTs. One solution to restore the ability to correctly diagnose falciparum malaria is to switch to an RDT which is not solely reliant on HRP2. This study used an agent-based stochastic simulation model to investigate the impact on prevalence and transmission caused by switching the type of RDT used once false-negative rates reached pre-defined thresholds within the treatment-seeking symptomatic population. The results show that low transmission settings were the first to reach the false-negative switch threshold, and that lower thresholds were typically associated with better long-term outcomes. Changing the diagnostic RDT away from a HRP2-only RDT is predicted to restore the ability to correctly diagnose symptomatic malaria infections, but often did not lead to the extinction of HRP2-negative parasites from the population which continued to circulate in low density infections, or return to the parasite prevalence and transmission levels seen prior to the introduction of the HRP2-negative parasite. In contrast, failure to move away from HRP2-only RDTs leads to near fixation of these parasites in the population, and the inability to correctly diagnose symptomatic cases. Overall, these results suggest pfhrp2-deleted parasites are likely to become a significant component of P. falciparum parasite populations, and that long-term strategies are needed for diagnosis and surveillance which do not rely solely on HRP2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10021339 | PMC |
http://dx.doi.org/10.1371/journal.pgph.0000106 | DOI Listing |
Ann Neurol
January 2025
Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
Objective: We aimed to evaluate the diagnostic accuracy of heparin-binding protein (HBP) in cerebrospinal fluid for the diagnosis of bacterial meningitis in patients with a suspected central nervous system infection.
Methods: This prospective multicenter cohort study determined the diagnostic accuracy of HBP in cerebrospinal fluid (CSF) for bacterial meningitis among a cohort of consecutive patients with a suspected central nervous infection. The final clinical diagnosis was considered the reference standard.
J Magn Reson Imaging
January 2025
Department of Radiology, Peking University Third Hospital, Beijing, China.
Background: The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics.
Purpose: To develop and validate artificial intelligence (AI) models using noncontrast MRI to identify primary sites of spinal metastases, aiming to enhance diagnostic efficiency.
Ther Adv Infect Dis
January 2025
Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
Background: Human herpesvirus-8 (HHV8) can present with cutaneous or extracutaneous manifestations. While violaceous skin lesions characterize cutaneous Kaposi sarcoma, extracutaneous HHV8 is challenging to diagnose due to nonspecific symptoms.
Objectives: We evaluated the role of microbial cell-free DNA next-generation sequencing (mcfDNA NGS) in diagnosing HHV8-related illness.
NIHR Open Res
January 2025
Centre for Health Services Studies, University of Kent, Canterbury, England, CT2 7NF, UK.
Background: Opioids are frequently prescribed for short-term acute pain following surgery. Used appropriately, opioids deliver extremely favourable pain relief. Used longer than 90-days, however, can result in health complications, including unintentional overdose and addiction.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, United States.
Background: Studies suggest that less than 4% of patients with pulmonary embolisms (PEs) are managed in the outpatient setting. Strong evidence and multiple guidelines support the use of the Pulmonary Embolism Severity Index (PESI) for the identification of acute PE patients appropriate for outpatient management. However, calculating the PESI score can be inconvenient in a busy emergency department (ED).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!