Spectral functions of non-Hermitian Hamiltonians can reveal the existence of topologically nontrivial line gaps and the associated topological edge modes. However, the computation of spectral functions in a non-Hermitian many-body system remains an open challenge. Here, we put forward a numerical approach to compute spectral functions of a non-Hermitian many-body Hamiltonian based on the kernel polynomial method and the matrix-product state formalism. We show that the local spectral functions computed with our algorithm reveal topological spin excitations in a non-Hermitian spin model, faithfully reflecting the nontrivial line gap topology in a many-body model. We further show that the algorithm works in the presence of the non-Hermitian skin effect. Our method offers an efficient way to compute local spectral functions in non-Hermitian many-body systems with tensor networks, allowing us to characterize line gap topology in non-Hermitian quantum many-body models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.100401 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Mechanical Engineering, IIT Bombay Mumbai Maharashtra India 400076
Using the spectral energy density method, we predict the phonon scattering mean lifetimes of polycrystalline graphene (PC-G) having polycrystallinity only along the -axis with seven different misorientation (tilt) angles at room temperature. Contrary to other studies on PC-G samples, our results indicate a strong dependence of the thermal conductivity (TC) on the tilt angles which we attribute to careful preparation of our grain boundaries-based samples without introducing any local strains and ensuring periodic boundary conditions for the supercells along the and axes. We also show that the square of the group velocity components along and axes and the phonon lifetimes are uncorrelated and the phonon density of states are almost the same for all samples with different tilt angles.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China.
Chinese pond turtle muscle peptide's molecular features, purification, structural characteristics, and antioxidant activity were investigated. The Flavourzyme hydrolysate demonstrated greater relative crystallinity (37.53%) than other hydrolysates using X-ray diffraction.
View Article and Find Full Text PDFACS Omega
December 2024
Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai 600014, India.
Four dual-responsive probe molecules 1,5-bis(thiophene-2-carbaldehyde)carbohydrazone (R1), 1,5-bis(thiophene-2-carbaldehyde)thiocarbohydrazone (R2), 1,5-bis(indole-3-carbaldehyde)carbohydrazone (R3), and 1,5-bis(indole-3-carbaldehyde)thiocarbohydrazone (R4) were synthesized, characterized, and investigated for their sensing efficacy. The initial sensing behavior of the probes was tested by colorimetric signaling, followed by spectral and theoretical techniques, which supported the dual-sensing ability of the selected inorganic ions. The probes exhibited highly selective optical recognition for Cu/Fe cations and F/ClO anions compared to the tested cations and anions.
View Article and Find Full Text PDFData Brief
February 2025
Engineering Institute, Veracruzana University, Juan Pablo II Avenue, Mocambo Campus, Costa Verde, Boca Del Rio City, Veracruz 94292, México.
The data presented here are the result of microtremor measurements at 44 points in three different soil types classified according to their fundamental vibration frequencies, on the metropolitan area of Veracruz-Boca del Río, Mexico. These Data are raw and was obtained using a GÜRALP 6TD model broadband orthogonal triaxial seismometer with an integrated 24-bit digitizer with a minimum recording time of 30 min and a recording rate of 100 samples per second (sps). The microtremor records were used to construct the H/V spectral ratios using the method of Nakamura.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!