We show that effectively cold metastable states in one-dimensional photodoped Mott insulators described by the extended Hubbard model exhibit spin, charge, and η-spin separation. Their wave functions in the large on-site Coulomb interaction limit can be expressed as |Ψ⟩=|Ψ_{charge}⟩|Ψ_{spin}⟩|Ψ_{η-spin}⟩, which is analogous to the Ogata-Shiba states of the doped Hubbard model in equilibrium. Here, the η-spin represents the type of photo-generated pseudoparticles (doublon or holon). |Ψ_{charge}⟩ is determined by spinless free fermions, |Ψ_{spin}⟩ by the isotropic Heisenberg model in the squeezed spin space, and |Ψ_{η-spin}⟩ by the XXZ model in the squeezed η-spin space. In particular, the metastable η-pairing and charge-density-wave (CDW) states correspond to the gapless and gapful states of the XXZ model. The specific form of the wave function allows us to accurately determine the exponents of correlation functions. The form also suggests that the central charge of the η-pairing state is 3 and that of the CDW phase is 2, which we numerically confirm. Our study provides analytic and intuitive insights into the correlations between active degrees of freedom in photodoped strongly correlated systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.106501DOI Listing

Publication Analysis

Top Keywords

spin charge
8
charge η-spin
8
η-spin separation
8
one-dimensional photodoped
8
photodoped mott
8
mott insulators
8
hubbard model
8
model squeezed
8
xxz model
8
model
5

Similar Publications

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

The temperature dependence of Mössbauer quadrupole splitting values: a quantum chemical analysis.

Chem Commun (Camb)

January 2025

Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.

The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

The charge state of a quantum point defect in a solid-state host strongly determines its optical and spin characteristics. Consequently, techniques for controlling the charge state are required to realize technologies for quantum networking and sensing. In this work, we demonstrate the use of deep-ultraviolet (DUV) radiation to dynamically neutralize nitrogen- (NV) and silicon-vacancy (SiV) centers.

View Article and Find Full Text PDF

Understanding the ligand field interactions in lanthanide-containing magnetic molecular complexes is of paramount importance for understanding their magnetic properties, and simple models for rationalizing their effects are much desired. In this work, the equivalence between electrostatic models, which derive their results from calculating the electrostatic interaction energy of the charge density of the 4f electrons in an electrostatic potential representing the ligands, and the common quantum mechanical effective spin Hamiltonian in the space of the ground multiplet is formulated in detail. This enables the construction of an electrostatic potential for any given ligand field Hamiltonian and discusses the effects of the ligand field interactions in terms of an interaction of a generalized 4f charge density with the electrostatic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!