We propose a skyrmion-based universal quantum computer. Skyrmions have the helicity degree of freedom in frustrated magnets, where twofold degenerated Bloch-type skyrmions are energetically favored by the magnetic dipole-dipole interaction. We construct a qubit based on them. A skyrmion must become a quantum-mechanical object when its size is of the order of nanometers. It is shown that the universal quantum computation is possible based on nanoscale skyrmions in a magnetic bilayer system. The one-qubit quantum gates are materialized by controlling the electric field and the spin current. The two-qubit gate is materialized with the use of the Ising-type exchange coupling. The merit of the present mechanism is that external magnetic field is not necessary. Our results may open a possible way toward universal quantum computation based on nanoscale topological spin textures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.106701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!