Human-Centered Design to Address Biases in Artificial Intelligence.

J Med Internet Res

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States.

Published: March 2023

The potential of artificial intelligence (AI) to reduce health care disparities and inequities is recognized, but it can also exacerbate these issues if not implemented in an equitable manner. This perspective identifies potential biases in each stage of the AI life cycle, including data collection, annotation, machine learning model development, evaluation, deployment, operationalization, monitoring, and feedback integration. To mitigate these biases, we suggest involving a diverse group of stakeholders, using human-centered AI principles. Human-centered AI can help ensure that AI systems are designed and used in a way that benefits patients and society, which can reduce health disparities and inequities. By recognizing and addressing biases at each stage of the AI life cycle, AI can achieve its potential in health care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132017PMC
http://dx.doi.org/10.2196/43251DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
reduce health
8
health care
8
disparities inequities
8
biases stage
8
stage life
8
life cycle
8
human-centered design
4
design address
4
biases
4

Similar Publications

Background: Artificial intelligence (AI) social chatbots represent a major advancement in merging technology with mental health, offering benefits through natural and emotional communication. Unlike task-oriented chatbots, social chatbots build relationships and provide social support, which can positively impact mental health outcomes like loneliness and social anxiety. However, the specific effects and mechanisms through which these chatbots influence mental health remain underexplored.

View Article and Find Full Text PDF

Background: With increasing adoption of remote clinical trials in digital mental health, identifying cost-effective and time-efficient recruitment methodologies is crucial for the success of such trials. Evidence on whether web-based recruitment methods are more effective than traditional methods such as newspapers, media, or flyers is inconsistent. Here we present insights from our experience recruiting tertiary education students for a digital mental health artificial intelligence-driven adaptive trial-Vibe Up.

View Article and Find Full Text PDF

Background: In online mental health communities, the interactions among members can significantly reduce their psychological distress and enhance their mental well-being. The overall quality of support from others varies due to differences in people's capacities to help others. This results in some support seekers' needs being met, while others remain unresolved.

View Article and Find Full Text PDF

Background Objectives: In malaria infection, quantifying blood parasitemia is a critical step for evaluating the severity of the disease. This has generally been conducted manually, and thus, its accuracy depends on the expertise of technicians. There is an urgent need for an automated technique to overcome manual errors.

View Article and Find Full Text PDF

To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!