The development of efficient atomic electrocatalysts to resolve the activity and selectivity issues of the nitric oxide reduction reaction (NORR) has increasingly received more attention but is still challenging. The current research on the dual atomic NORR electrocatalyst is exclusively focused on TM atoms. Herein, we propose a novel mechanism of introducing a P/S element, which takes advantage of finite orbitals to active the transition metal (TM) atoms of dual atomic electrocatalysts for NORR. The finite orbitals can hinder the capture of the lone pair electrons of NO but modulate the electronic configurations of the neighboring TM and thus the "donation-backdonation" mechanism can be realized. Through large-scale first-principles calculations, the catalytic performance of a series of P/S-TM biatoms supported by the monolayer CN (P/S-TM@CN) is evaluated. According to a "four-step" screening strategy, P-Cu@CN and S-Ni@CN are successfully screened as promising catalysts with outstanding activity and high selectivity for direct NO-to-NH conversion. Moreover, we identify Δ as a valid descriptor to evaluate the adsorption of NO on such catalysts, allowing for reducing the number of catalytic candidates. Our work thus provides a new direction for the rational design of dual atomic electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2mh01440h | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
We reported an exogenous nitrogen-doped method to synthesize a bifunctional electrocatalyst with oxygen reduction and evolution reaction activity. This electrocatalyst displays excellent ORR ( = 0.9 V RHE) and OER (potential = 1.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Information Science and Engineering, Yunnan University, Kunming650091,China.
Liquid chromatography retention time (RT) prediction plays a crucial role in metabolite identification, a challenging and essential task in untargeted metabolomics. Accurate molecular representation is vital for reliable RT prediction. To address this, we propose a novel molecular representation learning framework, ABCoRT(tom-ond -learning for etention ime prediction), designed for predicting metabolite retention times.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Hybrid functionals that incorporate exact Hartree-Fock exchange (HFX) into density functional theory (DFT) are crucial for accurately predicting the electronic structures of extended systems in condensed-matter physics and materials science. Although the exact exchange contributes only a small fraction of the total energy, HFX calculations in hybrid functionals demand significant computational resources. Here, we introduce dual-grid and mixed-precision techniques, based on two low-rank approximations, adaptively compressed exchange (ACE) and interpolative separable density fitting (ISDF) methods, to significantly improve the computational efficiency of plane-wave hybrid functional calculations in the software package PWDFT (plane wave density functional theory).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea. Electronic address:
The presence of cobalt ions (Co) and radionuclides (Co) in industrial and radioactive effluents pose serious threats to environmental ecosystems and human health. This paper presents the synthesis of dual-functional hydroxyapatite (HAp)-incorporated spherical carbon (SC) composite (HAp/SC) towards the selective adsorption of cobalt from wastewater and the utilization of the Co-adsorbed HAp/SC composite (Co- HAp/SC) as an electrocatalyst for the oxygen evolution reaction (OER). Herein, we prepared a series of HAp/SC composites by varying HAp weight percentages of 10 %, 20 %, 30 %, 40 %, and 50 %.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, JAPAN.
Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!