Today, human organoids are becoming an integrated part of genomics and epigenomics, as they provide a platform that can be used for the definite study of molecular and cellular mechanisms occurring at different stages of development, particularly organogenesis, within the human body. Airway development is a complex process heavily influenced by epigenetic regulatory mechanisms in response to environmental changes, and as such, human lung organoids are an indispensable asset for further exploration of these mechanisms as a mode of transition from human in vitro to human ex vivo studies. Cultured primarily in compounds mimicking the extracellular matrix, such as Matrigel, these lung organoids have helped us to come to a better understanding of the role of polycomb repressive complex 2 (PRC2) and enhancer of zeste homolog 2 (EZH2) in lung epithelial cell differentiation and airway development, which was first reported in the FASEB journal in 2019. The following is an extended account of how the histone methylation-regulating PRC2 comes to play in the molding of the human bronchial tree, along with further epigenetic insights based on more recently developed human lung organoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202201666R | DOI Listing |
We compared virus replication and host responses in human alveolar epithelium infected with highly pathogenic avian influenza (HPAI) A(H5N1) viruses. A/Vietnam/1203/2004 replicated most efficiently, followed by A/Texas/37/2024, then A/bovine/Ohio/B24OSU-342/2024. Induction of interferon-stimulated genes was lower with A/Texas/37/2024 and A/bovine/Ohio/B24OSU-342/2024, which may indicate a reduced disease severity of those viruses.
View Article and Find Full Text PDFSci Transl Med
January 2025
Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease in which repetitive epithelial injury and incomplete alveolar repair result in accumulation of profibrotic intermediate/transitional "aberrant" epithelial cell states. The mechanisms leading to the emergence and persistence of aberrant epithelial populations in the distal lung remain incompletely understood. By interrogating single-cell RNA sequencing (scRNA-seq) data from patients with IPF and a mouse model of repeated lung epithelial injury, we identified persistent activation of hypoxia-inducible factor (HIF) signaling in these aberrant epithelial cells.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
When a patient has two or more primary tumors, excluding the possibility of diffuse, recurrent, or metastatic, they can be defined as having multiple primary malignant neoplasms (MPMNs). Moreover, cases of three primary urinary tract tumors are very rare. Here, we reported a patient of MPMNs with four primary tumors, including three urinary tract cancers (renal cancer, prostate cancer, and bladder cancer) and lung cancer.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan.
: This research aims to investigate the mechanisms of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC), particularly focusing on the role of the epithelial-mesenchymal transition (EMT) within the tumor microenvironment (TME). : We employed an in vitro three-dimensional organoid model that mirrors the physiology of human lung cancer. These organoids consist of lung cancer cells harboring specific mutations, human mesenchymal stem cells, and human umbilical vein endothelial cells.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Lung diseases account for over four million premature deaths every year, and experts predict that this number will increase in the future. The top cause of death globally is diseases which include conditions like lung cancer asthma and COPD. Treating severe acute lung injury is a complex task because lungs struggle to heal themselves in the presence of swelling inflammation and scarring caused by damage, to the lung tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!