No single linear free energy relationship (LFER) exists that can predict reduction rate constants of all munition constituents (MCs). To address this knowledge gap, we measured the reduction rates of MCs and their surrogates including nitroaromatics [NACs; 2,4,6-trinitrotoluene (TNT), 2,4-dinitroanisole (DNAN), 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-dinitrotoluene (DNT)], nitramines [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroguanidine (NQ)], and azoles [3-nitro-1,2,4-triazol-5-one (NTO) and 3,4-dinitropyrazole (DNP)] by three dithionite-reduced quinones (lawsone, AQDS, and AQS). All MCs/NACs were reduced by the hydroquinones except NQ. Hydroquinone and MC speciations were varied by controlling pH, permitting the application of a speciation model to determine second-order rate constants () from observed pseudo-first-order rate constants. The intrinsic reactivity of MCs (oxidants) decreased upon deprotonation, while the opposite was true for hydroquinones (reductants). The rate constants spanned ∼6 orders of magnitude in the order NTO ≈ TNT > DNP > DNT ≈ DNAN ≈ 2-A-DNT > DNP > 4-A-DNT > NTO > RDX. LFERs developed using density functional theory-calculated electron transfer and hydrogen atom transfer energies and reported one-electron reduction potentials successfully predicted , suggesting that these structurally diverse MCs/NACs are all reduced by hydroquinones through the same mechanism and rate-limiting step. These results increase the applicability of LFER models for predicting the fate and half-lives of MCs and related nitro compounds in reducing environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c08931DOI Listing

Publication Analysis

Top Keywords

rate constants
20
electron transfer
8
hydrogen atom
8
atom transfer
8
linear free
8
free energy
8
constants munition
8
mcs/nacs reduced
8
reduced hydroquinones
8
rate
5

Similar Publications

Implantable drug delivery systems are crucial for achieving sustained delivery of active compounds to specific sites or systemic circulation. In this study, a novel reservoir-type implant combining a biodegradable rate-controlling membrane with a drug-containing core prepared using direct compression techniques is developed. The membrane is composed of poly(caprolactone) (PCL), and risperidone (RIS) served as the model drug.

View Article and Find Full Text PDF

Purpose: The present review investigates the responses of heart rate variability indices following high-intensity interval aerobic exercise, comparing it with moderate-intensity continuous exercise in adults, with the aim of informing clinical practice.

Methods: Searches were conducted in four databases until March 2023. Eligible studies included randomized controlled trials that assessed heart rate variability indices such as the standard deviation of normal-to-normal heartbeat intervals (SDNN), the root mean square of successive differences (RMSSD), the proportion of the number of pairs of successive normal-to-normal (NN or R-R) intervals that differ by more than 50 ms (NN50) divided by the total number of NN intervals (pNN50), power in high frequency range (HF), power in low frequency range (LF), and LF/HF before and after high-intensity interval and moderate-intensity continuous aerobic exercise.

View Article and Find Full Text PDF

Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.

View Article and Find Full Text PDF

A digital-movie-based flow colorimetry for pH measurement using a universal indicator has been applied to the end point detection of acid-base titrations. A two-channel flow system of feedback-based flow ratiometry, primarily consisting of two peristaltic pumps, a digital microscope-based detector, and a laptop computer, was constructed; a Visual Basic.NET program written in-house was used for automating the analytical processes.

View Article and Find Full Text PDF

DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!