Orbital floor fractures represent a common fracture type of the midface and are standardly diagnosed clinically as well as radiologically using linear measurement methods. The aim of this study was to evaluate the accuracy of diagnostic measurements of isolated orbital floor fractures based on two-dimensional (2D) and three-dimensional (3D) measurement techniques. A cohort of 177 patients was retrospectively and multi-centrically evaluated after surgical treatment of an orbital floor fracture between 2010 and 2020. In addition to 2D and 3D measurements of the fracture area, further fracture-related parameters were investigated. Calculated fracture areas using the 2D measurement technique revealed an average area of 287.59 mm, whereas the 3D measurement showed fracture areas with a significantly larger average value of 374.16 mm ( < 0.001). On average, the 3D measurements were 1.53-fold larger compared to the 2D measurements. This was observed in 145 patients, whereas only 32 patients showed smaller values in the 3D-based approach. However, the process duration of the 3D measurement took approximately twice as long as the 2D-based procedure. Nonetheless, 3D-based measurement of orbital floor defects provides a more accurate estimation of the fracture area than the 2D-based procedure and can be helpful in determining the indication and planning the surgical procedure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037578PMC
http://dx.doi.org/10.3390/tomography9020047DOI Listing

Publication Analysis

Top Keywords

orbital floor
20
floor fractures
8
fracture area
8
fracture areas
8
2d-based procedure
8
fracture
6
measurement
6
measurements
5
orbital
5
floor
5

Similar Publications

Objective: Evaluate the feasibility of the midface degloving approach (MDA) in total maxillectomy without orbital exenteration (TMWOE) and reconstruction for sino-nasal neoplasms.

Study Design: Retrospective case series.

Setting: Tertiary referral center.

View Article and Find Full Text PDF
Article Synopsis
  • Infraorbital ethmoidal air cells (IOEAc) are a type of ethmoidal cells located beneath the orbit, showing significant anatomical variation in humans.
  • A study involving 1260 CT scans aimed to identify and classify these variations, noting the presence of IOEAc in 173 cases (13.7%).
  • The new classification system categorized the air cells into five main types with various subtypes, enhancing understanding for clinical practice and future research.
View Article and Find Full Text PDF

CT is the gold standard for evaluating orbital trauma, providing rapid and detailed imaging of bony structures, soft tissue, and the globe. This is crucial in assessing orbital trauma due to its potential to cause significant impairment of ocular function. This case report presents a 35-year-old male who was admitted to the emergency department with a complicated left orbital blow-out fracture following blunt facial trauma.

View Article and Find Full Text PDF

Objective: The production of 3-dimensional models and materials according to preoperative virtual surgical planning is a time-consuming process and causes high costs. We aimed to demonstrate the navigation mediated reconstruction of the patients who underwent the removal of a tumoral mass in midfacial region according to their preoperatively prepared surgical plannings.

Study Design: Patients who underwent the removal of tumoral mass and reconstruction in their midfacial region were included in the study.

View Article and Find Full Text PDF

While orbital floor metastasis from hepatocellular carcinoma (HCC) has been reported, ocular (eyeball) metastasis is exceedingly rare. Most ocular metastases originate from breast or lung cancer. In this article, we present the case of a 65-year-old man diagnosed with HCC with central necrosis (cT3N0M0, stage III) based on characteristic imaging findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!