Halogen bonds regulating structures and optical properties of hybrid iodobismuthate perovskites.

Dalton Trans

CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People's Republic of China.

Published: April 2023

Successive structural transformations were observed in a methanolic solution containing 4-iodo-1-methylpyridin-1-ium iodide (IPyMe·I) and bismuth iodide (BiI). When kept in the solution, the amorphous solid (P_1) obtained immediately on mixing would transform to needle crystals (C_1) in hours, which would convert to prismatic crystals (C_2) in around 2 days. In the presence of hydroiodic acid, the hydrothermal reaction of IPyMe·I and BiI also gave rise to C_2, and crystals of C_2 in this solution would transform to a third crystalline product C_3 in 3 days. X-ray single crystal diffraction experiments show C_1 containing one-dimensional {BiI} chains, C_2 as a binuclear BiI structure, and C_3 consisting of a monomeric BiI unit, all with IPyMe as counter cations. Halogen bonds exist between IPyMe and the iodobismuthate, which may play key roles in the structural transformation. By introducing halogen bonding, the hybrids demonstrate excellent water-resistance. A thermal-induced reversible colour change from yellow to dark red occurred from 100 K to 450 K for all three hybrids, in which lattice expansion over the temperature range may be a reason for the thermochromism. The bandgaps derived from the UV-vis diffusion reflectance for the three complexes were 1.80 eV for C_1, 1.84 eV for C_2 and 2.00 eV for C_3. DTF computations followed by electron density topological analysis were applied to explain the structure-optical property relationship for complexes of diverse iodobismuthate types but the same counter cation. It was found that the nature of the Bi-I bonds rather than the dimensionality of the inorganic iodobismuthates is mainly responsible for the light absorption of the materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt00210aDOI Listing

Publication Analysis

Top Keywords

halogen bonds
8
crystals c_2
8
c_2
5
bonds regulating
4
regulating structures
4
structures optical
4
optical properties
4
properties hybrid
4
hybrid iodobismuthate
4
iodobismuthate perovskites
4

Similar Publications

The isolation of nucleophilic boron bases has led to a paradigm shift in boron chemistry. Previous studies of the bis(carbene) borylene complexes revealed that these compounds possess strong donor abilities, and their reaction inertness is due to the large steric hindrance between boron reagents and reactant. In the present study, we have theoretically studied the [(N)BX] and [(N)BX] compounds (X = H, F, Cl, Br).

View Article and Find Full Text PDF

Exploring the Capability of Mechanically Interlocked Molecules in Anion Recognition: A Computational Insight.

ACS Phys Chem Au

January 2025

Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.

The present study elucidated the role of both hydrogen and halogen bonds, from an electronic structure perspective, in the anion recognition process by the [2]catenane () containing a moiety with hydrogen bond donors entangled with another macrocyclic halogen bond donor. Spherical and nonspherical anions have been employed. The roles of different σ-hole donors have also been considered.

View Article and Find Full Text PDF

The selective amination of aromatic C-H bonds is a powerful strategy to access aryl amines, functionalities found in many pharmaceuticals and agrochemicals. Despite advances in the field, a platform for the direct, selective C-H amination of electronically diverse (hetero)arenes, particularly electron-deficient (hetero)arenes, remains an unaddressed fundamental challenge. In addition, many (hetero)arenes present difficulty in common selective pre-functionalization reactions, such as halogenation , or metal-catalyzed borylation and silylation .

View Article and Find Full Text PDF

Delocalized multicenter bonds play a crucial role in clusters with a planar hypercoordinate center(s), making it difficult for highly electronegative elements, especially halogen atoms, to achieve the planar hypercoordinate arrangement. Herein, we introduce a star-like cluster Br6Li5-, whose global minimum contains a planar pentacoordinate bromine (ppBr). In this cluster, the central ppBr atom coordinates with five alkali metal Li atoms, which in turn bridge an equal number of electronegative Br atoms in the periphery, leading to the formation of the binary cluster Br6Li5-.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!