Plants respond to changing light intensity in the short term through regulation of light harvesting, electron transfer, and metabolism to mitigate redox stress. A sustained shift in light intensity leads to a long-term acclimation response (LTR). This involves adjustment in the stoichiometry of photosynthetic complexes through de novo synthesis and degradation of specific proteins associated with the thylakoid membrane. The light-harvesting complex II (LHCII) serine/threonine kinase STN7 plays a key role in short-term light harvesting regulation and was also suggested to be crucial to the LTR. Arabidopsis plants lacking STN7 (stn7) shifted to low light experience higher photosystem II (PSII) redox pressure than the wild type or those lacking the cognate phosphatase TAP38 (tap38), while the reverse is true at high light, where tap38 suffers more. In principle, the LTR should allow optimisation of the stoichiometry of photosynthetic complexes to mitigate these effects. We used quantitative label-free proteomics to assess how the relative abundance of photosynthetic proteins varied with growth light intensity in wild-type, stn7, and tap38 plants. All plants were able to adjust photosystem I, LHCII, cytochrome b f, and ATP synthase abundance with changing white light intensity, demonstrating neither STN7 nor TAP38 is crucial to the LTR per se. However, stn7 plants grown for several weeks at low light (LL) or moderate light (ML) still showed high PSII redox pressure and correspondingly lower PSII efficiency, CO assimilation, and leaf area compared to wild-type and tap38 plants, hence the LTR is unable to fully ameliorate these symptoms. In contrast, under high light growth conditions the mutants and wild type behaved similarly. These data are consistent with the paramount role of STN7-dependent LHCII phosphorylation in tuning PSII redox state for optimal growth in LL and ML conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952155 | PMC |
http://dx.doi.org/10.1111/tpj.16204 | DOI Listing |
Alzheimers Dement
December 2024
Yonsei university, Wonju-si, Gangwon-do, Korea, Republic of (South).
Background: Sleep directly affects daily life, and lack of sleep affects cognitive function and mental health. So, this study analyzed the performance structures of daily activities affecting sleep using social network analysis.
Methods: The subjects were 313 people over 50 years old.
Alzheimers Dement
December 2024
McMaster University, Hamilton, ON, Canada.
Background: 65% of persons with dementia (PWD) suffer from disturbed sleeping patterns and 28% experience vision related falls. Improved lighting has been shown in numerous studies since the 1980s to mitigate these effects.
Method: Computer code was written to optimize the spectra and intensity of light for vision and non-vision purposes over a 24-hour cycle based on off-the-shelf LEDs.
J Rural Med
January 2025
Graduate School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan.
Objective: To determine the seasonal differences in instrumental activities of daily living (IADL) and objective physical activity among older adults residing in non-urban areas in snowy and cold regions according to sex.
Patients And Methods: Fifty older adults aged ≥65 years were included in the present study. IADL was assessed using the revised Frenchay Activities Index (FAI), and physical activity was measured using a triaxial accelerometer.
Physiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFLuminescence
January 2025
Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, Lviv, Ukraine.
Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!