The preparation of room temperature phosphorescent carbon dots still faces great challenges, especially in the case of carbon dots endowed of visible-light excitable room temperature phosphorescence (RTP). To date, a limited number of substrates have been exploited to synthesize room temperature phosphorescent carbon dots, and most of them can emit RTP only in solid state. Here, the synthesis of a composite obtained from the calcination of green carbon dots (g-CDs) blended with aluminum hydroxide (Al(OH) ) is reported. The resultant hybrid material g-CDs@Al O exhibits blue fluorescence and green RTP emissions in an on/off switch process at 365 nm. Notably, this composite manifests strong resistance to extreme acid and basic conditions up to 30 days of treatment. The dense structure of Al O formed by calcination contributes to the phosphorescent emission of g-CDs. Surprisingly, g-CDs@Al O can also emit yellow RTP under irradiation with white light. The multicolor emissions can be employed for anti-counterfeiting and information encryption. This work provides a straightforward approach to produce room temperature phosphorescent carbon dots for a wide range of applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202207046 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.
View Article and Find Full Text PDFRSC Adv
January 2025
Centre for Nano Bio Polymer Science and Technology, Department of Physics, St. Thomas College Palai Kerala 686574 India +919446126926.
We report a green approach to prepare carbon dots (CDs) with fresh tomatoes as carbon sources and amino acids as dopants (ACDs) by a microwave assisted method. The synthesised CDs were analysed by UV-visible absorption spectroscopy, photoluminescence spectroscopy, high resolution transmission electron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy. An MTT assay was used to evaluate the cytotoxicity of CDs toward L929 cells and found that CDs exhibit low cytotoxicity.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!