Aims: The extensive variability in cytochrome P450 2D6 (CYP2D6) metabolism is mainly caused by genetic polymorphisms. However, there is large, unexplained variability in CYP2D6 metabolism within CYP2D6 genotype subgroups. Solanidine, a dietary compound found in potatoes, is a promising phenotype biomarker predicting individual CYP2D6 metabolism. The aim of this study was to investigate the correlation between solanidine metabolism and the CYP2D6-mediated metabolism of risperidone in patients with known CYP2D6 genotypes.
Methods: The study included therapeutic drug monitoring (TDM) data from CYP2D6-genotyped patients treated with risperidone. Risperidone and 9-hydroxyrisperidone levels were determined during TDM, and reprocessing of the respective TDM full-scan high-resolution mass spectrometry files was applied for semi-quantitative measurements of solanidine and five metabolites (M402, M414, M416, M440 and M444). Spearman's tests determined the correlations between solanidine metabolic ratios (MRs) and the 9-hydroxyrisperidone-to-risperidone ratio.
Results: A total of 229 patients were included. Highly significant, positive correlationswere observed between all solanidine MRs and the 9-hydroxyrisperidone-to-risperidone ratio (ρ > 0.6, P < .0001). The strongest correlation was observed for the M444-to-solanidine MR in patients with functional CYP2D6 metabolism, i.e., genotype activity scores of 1 and 1.5 (ρ 0.72-0.77, P < .0001).
Conclusion: The present study shows strong, positive correlations between solanidine metabolism and CYP2D6-mediated risperidone metabolism. The strong correlation within patients carrying CYP2D6 genotypes encoding functional CYP2D6 metabolism suggests that solanidine metabolism may predict individual CYP2D6 metabolism, and hence potentially improve personalized dosing of drugs metabolized by CYP2D6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bcp.15721 | DOI Listing |
Front Pharmacol
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.
Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.
Expert Opin Drug Metab Toxicol
January 2025
EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain.
Introduction: Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice.
View Article and Find Full Text PDFEur J Clin Pharmacol
January 2025
Electrical and Computer Engineering Department, School of Engineering, Lebanese American University, P.O. Box: 36, Byblos, F-19, Lebanon.
Objective: The study aims to verify the usage of mathematical modeling in predicting patients' medication doses in association with their genotypes versus real-world data.
Methods: The work relied on collecting, extracting, and using real-world data on dosing and patients' genotypes. Drug metabolizing enzymes, i.
Sci Rep
January 2025
Institute for Breath Research, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
Cytochrome P450 (CYP) 3A4 plays a major role in drug metabolism. Its activity could be determined by non-invasive and cost-effective assays, such as breath analysis, for the personalised monitoring of drug response. For the first time, we identify an isotopically unlabelled CYP3A4 substrate, tolterodine that leads to the formation of a non-toxic volatile metabolite, acetone, which could potentially be applied to monitor CYP3A4 activity in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!