Purpose: Early monitoring and intervention for patients with novel coronavirus disease-2019 (COVID-19) will benefit both patients and the medical system. Chest computed tomography (CT) radiomics provide more information regarding the prognosis of COVID-19.
Methods: A total of 833 quantitative features of 157 COVID-19 patients in the hospital were extracted. By filtering unstable features using the least absolute shrinkage and selection operator algorithm, a radiomic signature was built to predict the prognosis of COVID-19 pneumonia. The main outcomes were the area under the curve (AUC) of the prediction models for death, clinical stage, and complications. Internal validation was performed using the bootstrapping validation technique.
Results: The AUC of each model demonstrated good predictive accuracy [death, 0.846; stage, 0.918; complication, 0.919; acute respiratory distress syndrome (ARDS), 0.852]. After finding the optimal cut-off for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 for the prediction of the death of COVID-19 patients; 0.814, 0.949, and 0.732 for the prediction of a higher stage of COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19 patients; and 0.814, 0.818, and 0.814 for ARDS of COVID-19 patients. The AUCs after bootstrapping were 0.846 [95% confidence interval (CI): 0.844-0.848] for the death prediction model, 0.919 (95% CI: 0.917-0.922) for the stage prediction model, 0.919 (95% CI: 0.916-0.921) for the complication prediction model, and 0.853 (95% CI: 0.852-0.0.855) for the ARDS prediction model in the internal validation. Based on the decision curve analysis, the radiomics nomogram was clinically significant and useful.
Conclusion: The radiomic signature from the chest CT was significantly associated with the prognosis of COVID-19. A radiomic signature model achieved maximum accuracy in the prognosis prediction. Although our results provide vital insights into the prognosis of COVID-19, they need to be verified by large samples in multiple centers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679604 | PMC |
http://dx.doi.org/10.5152/dir.2022.21576 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!