The dynamics of cellular mechanisms can be investigated through the analysis of networks. One of the simplest but most popular modeling strategies involves logic-based models. However, these models still face exponential growth in simulation complexity compared with a linear increase in nodes. We transfer this modeling approach to quantum computing and use the upcoming technique in the field to simulate the resulting networks. Leveraging logic modeling in quantum computing has many benefits, including complexity reduction and quantum algorithms for systems biology tasks. To showcase the applicability of our approach to systems biology tasks, we implemented a model of mammalian cortical development. Here, we applied a quantum algorithm to estimate the tendency of the model to reach particular stable conditions and further revert dynamics. Results from two actual quantum processing units and a noisy simulator are presented, and current technical challenges are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028428PMC
http://dx.doi.org/10.1016/j.patter.2023.100705DOI Listing

Publication Analysis

Top Keywords

quantum computing
12
systems biology
12
biology tasks
8
quantum
5
leveraging quantum
4
computing dynamic
4
dynamic analyses
4
analyses logical
4
logical networks
4
networks systems
4

Similar Publications

Designing cost-effective electrocatalysts with fast reaction kinetics and high stability is an outstanding challenge in green hydrogen generation through overall water splitting (OWS). Layered double hydroxide (LDH) heterostructure materials are promising candidates to catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), the two OWS half-cell reactions. This work develops a facile hydrothermal route to synthesiz hierarchical heterostructure MoS@NiFeCo-LDH and MoS@NiFeCo-Mo(doped)-LDH electrocatalysts, which exhibit extremely good OER and HER performance as witnessed by their low IR-corrected overpotentials of 156 and 61 mV with at a current density of 10 mA cm under light assistance.

View Article and Find Full Text PDF

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

Quantum Broadcast Channel Simulation via Multipartite Convex Splitting.

Commun Math Phys

January 2025

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 China.

We show that the communication cost of quantum broadcast channel simulation under free entanglement assistance between the sender and the receivers is asymptotically characterized by an efficiently computable single-letter formula in terms of the channel's multipartite mutual information. Our core contribution is a new one-shot achievability result for multipartite quantum state splitting via multipartite convex splitting. As part of this, we face a general instance of the quantum joint typicality problem with arbitrarily overlapping marginals.

View Article and Find Full Text PDF

Topological Bardeen-Cooper-Schrieffer theory of superconducting quantum rings.

Eur Phys J B

January 2025

Department of Physics "A. Pontremoli", University of Milan, Via Celoria 16, 20133 Milan, Italy.

Abstract: Quantum rings have emerged as a playground for quantum mechanics and topological physics, with promising technological applications. Experimentally realizable quantum rings, albeit at the scale of a few nanometers, are 3D nanostructures. Surprisingly, no theories exist for the topology of the Fermi sea of quantum rings, and a microscopic theory of superconductivity in nanorings is also missing.

View Article and Find Full Text PDF

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!