Using hypothesis-learning-driven automated scanning probe microscopy (SPM), we explore the bias-induced transformations that underpin the functionality of broad classes of devices and materials from batteries and memristors to ferroelectrics and antiferroelectrics. Optimization and design of these materials require probing the mechanisms of these transformations on the nanometer scale as a function of a broad range of control parameters, leading to experimentally intractable scenarios. Meanwhile, often these behaviors are understood within potentially competing theoretical hypotheses. Here, we develop a hypothesis list covering possible limiting scenarios for domain growth in ferroelectric materials, including thermodynamic, domain-wall pinning, and screening limited. The hypothesis-driven SPM autonomously identifies the mechanisms of bias-induced domain switching, and the results indicate that domain growth is ruled by kinetic control. We note that the hypothesis learning can be broadly used in other automated experiment settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028429PMC
http://dx.doi.org/10.1016/j.patter.2023.100704DOI Listing

Publication Analysis

Top Keywords

scanning probe
8
probe microscopy
8
hypothesis learning
8
domain switching
8
ferroelectric materials
8
domain growth
8
autonomous scanning
4
microscopy hypothesis
4
learning exploring
4
exploring physics
4

Similar Publications

We investigate the thermoelectric response of an Abrikosov vortex in type-II superconductors in the deep quantum limit. We consider two thermoelectric geometries, a type-II superconductor-insulator-normal-metal (S-I-N) junction and a local scanning tunneling microscope (STM)-tip normal metal probe over the superconductor. We exploit the strong breaking of particle-hole symmetry in vortex-bound states at subgap energies within the superconducting vortex to realize a giant thermoelectric response in the presence of fluxons.

View Article and Find Full Text PDF

Measurement of blood flow during exercise is crucial for understanding physiological responses and performance outcomes. However, traditional methods are often invasive, costly, or require substantial training, limiting widespread research in this area. This study introduces the innovative use of limb-affixed ultrasound probe holders for vascular imaging during exercise to overcome these challenges.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Yale University, New Haven, CT, USA.

Background: Advances in Alzheimer's disease (AD) have revealed a novel fluid biomarker, tau phosphorylated at T217 (pT217-tau), in CSF and plasma, that predicts AD prior to cognitive deficits. Understanding the role of pT217-tau is important in assessing efficacy of novel treatments aimed at early-stage disease. However, it is unknown why pT217-tau is effective in predicting brain pathology, as little is known about early, soluble pT217-tau brain expression.

View Article and Find Full Text PDF

Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method.

View Article and Find Full Text PDF

Vestibular Implant Surgery: How to Deal With Obstructed Semicircular Canals-A Diagnostic and Surgical Guide.

J Otolaryngol Head Neck Surg

January 2025

Division of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.

Background: A vestibular implant can partially restore vestibular function by providing motion information through implanted electrodes. During vestibular implantation, various obstructions of the semicircular canals, such as protein deposits, fibrosis, and ossification, can be encountered. The objective was to explore the relationship between preoperative imaging and intraoperative findings of semicircular canal obstruction and to develop surgical strategies for dealing with obstructions of the semicircular canal(s) in patients eligible for vestibular implantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!