Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug studies. A primary challenge in modeling drug response prediction (DRP) with PDXs and neural networks (NNs) is the limited number of drug response samples. We investigate multimodal neural network (MM-Net) and data augmentation for DRP in PDXs. The MM-Net learns to predict response using drug descriptors, gene expressions (GE), and histology whole-slide images (WSIs). We explore whether combining WSIs with GE improves predictions as compared with models that use GE alone. We propose two data augmentation methods which allow us training multimodal and unimodal NNs without changing architectures with a single larger dataset: 1) combine single-drug and drug-pair treatments by homogenizing drug representations, and 2) augment drug-pairs which doubles the sample size of all drug-pair samples. Unimodal NNs which use GE are compared to assess the contribution of data augmentation. The NN that uses the original and the augmented drug-pair treatments as well as single-drug treatments outperforms NNs that ignore either the augmented drug-pairs or the single-drug treatments. In assessing the multimodal learning based on the MCC metric, MM-Net outperforms all the baselines. Our results show that data augmentation and integration of histology images with GE can improve prediction performance of drug response in PDXs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027779PMC
http://dx.doi.org/10.3389/fmed.2023.1058919DOI Listing

Publication Analysis

Top Keywords

data augmentation
20
drug response
16
multimodal learning
8
patient-derived xenografts
8
gene expressions
8
expressions histology
8
histology images
8
drp pdxs
8
unimodal nns
8
drug-pair treatments
8

Similar Publications

UAV Trajectory Control and Power Optimization for Low-Latency C-V2X Communications in a Federated Learning Environment.

Sensors (Basel)

December 2024

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B2K3, Canada.

Unmanned aerial vehicle (UAV)-enabled vehicular communications in the sixth generation (6G) are characterized by line-of-sight (LoS) and dynamically varying channel conditions. However, the presence of obstacles in the LoS path leads to shadowed fading environments. In UAV-assisted cellular vehicle-to-everything (C-V2X) communication, vehicle and UAV mobility and shadowing adversely impact latency and throughput.

View Article and Find Full Text PDF

Point Cloud Wall Projection for Realistic Road Data Augmentation.

Sensors (Basel)

December 2024

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea.

Several approaches have been developed to generate synthetic object points using real LiDAR point cloud data for advanced driver-assistance system (ADAS) applications. The synthetic object points generated from a scene (both the near and distant objects) are essential for several ADAS tasks. However, generating points from distant objects using sparse LiDAR data with precision is still a challenging task.

View Article and Find Full Text PDF

Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN).

View Article and Find Full Text PDF

Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data.

Sensors (Basel)

December 2024

School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.

Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Integrating vision-language models into these workflows could address this gap by providing enhanced contextual understanding and enabling advanced queries across temporal and spatial dimensions. Here, we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps.

View Article and Find Full Text PDF

Cross-Field Road Markings Detection Based on Inverse Perspective Mapping.

Sensors (Basel)

December 2024

Department of Geomatics, National Cheng Kung University, No. 1, University Rd., Tainan 701, Taiwan.

With the rapid development of the autonomous vehicles industry, there has been a dramatic proliferation of research concerned with related works, where road markings detection is an important issue. When there is no public open data in a field, we must collect road markings data and label them by ourselves manually, which is huge labor work and takes lots of time. Moreover, object detection often encounters the problem of small object detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!