Recognition of group members is an important adaptation in social organisms because it allows help to be directed toward kin or individuals that are likely to reciprocate, and harm to be directed toward members of competing groups. Evidence in a wide range of animals shows that responses to outgroups vary with context, suggesting that cues to group membership also depend on the social or environmental context. In termites, intergroup encounters are frequent and their outcomes highly variable, ranging from destruction of a colony to colony fusion. As well as genetic factors, nestmate recognition in social insects commonly relies on cues that are mediated by environmental factors such as food source. However, single-piece nesting termite colonies share nesting material and food source with rival colonies (their wood substrate serves as both). In principle, the shared environment of single-piece nesting termite colonies could constrain their ability to identify non-nestmates, contributing to some of the variation seen in encounters, but this has not been investigated. In this study, we raised incipient colonies of a single-piece nesting termite, , on two different wood types and conducted behavioral assays to test whether nestmate discrimination can be constrained by common environmental conditions. We found that non-nestmates elicited higher rates of identity checking and defense behavior compared to nestmates, but there was no effect of wood type on the strength of behavioral responses to non-nestmates. We also found that one key cooperative behavior (allogrooming) was performed equally toward both nestmates and non-nestmates. These findings offer no support for the hypothesis that common wood type constrains the nestmate recognition system of single piece nesting termites. We suggest that where groups encounter each other frequently in a common environment, selection will favor discrimination based on genetic and/or higher resolution environmentally mediated cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030232 | PMC |
http://dx.doi.org/10.1002/ece3.9901 | DOI Listing |
Ecol Evol
March 2023
Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Cornwall UK.
Recognition of group members is an important adaptation in social organisms because it allows help to be directed toward kin or individuals that are likely to reciprocate, and harm to be directed toward members of competing groups. Evidence in a wide range of animals shows that responses to outgroups vary with context, suggesting that cues to group membership also depend on the social or environmental context. In termites, intergroup encounters are frequent and their outcomes highly variable, ranging from destruction of a colony to colony fusion.
View Article and Find Full Text PDFSci Rep
July 2022
Biocenter, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
Physogastry is a phenomenon occurring in Euarthropoda and describes an extreme inflation of (parts of) the trunk. It is best known from ticks, termite queens, or honey-pot ants, but can also be found in several other representatives of Euarthropoda. Physogastry has so far rarely been seen in the fossil record.
View Article and Find Full Text PDFAdvances in individual marking methods have facilitated detailed studies of animal populations and behavior as they allow tracking of individuals through time and space. Hemimetabolous insects, representing a wide range of commonly used model organisms, present a unique challenge to individual marking as they are not only generally small-bodied, but also molt throughout development, meaning that traditional surface marks are not persistent.Visible implant elastomer (VIE) offers a potential solution as small amounts of the inert polymer can be implanted under the skin or cuticle of an animal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!