Data-Dependent and Data-Independent Acquisition modes (DDA and DIA, respectively) are both widely used to acquire MS2 spectra in untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS) metabolomics analyses. Despite their wide use, little work has been attempted to systematically compare their MS/MS spectral annotation performance in untargeted settings due to the lack of ground truth and the costs involved in running a large number of acquisitions. Here, we present a systematic comparison of these two acquisition methods in untargeted metabolomics by extending our Virtual Metabolomics Mass Spectrometer (ViMMS) framework with a DIA module. Our results show that the performance of these methods varies with the average number of co-eluting ions as the most important factor. At low numbers, DIA outperforms DDA, but at higher numbers, DDA has an advantage as DIA can no longer deal with the large amount of overlapping ion chromatograms. Results from simulation were further validated on an actual mass spectrometer, demonstrating that using ViMMS we can draw conclusions from simulation that translate well into the real world. The versatility of the Virtual Metabolomics Mass Spectrometer (ViMMS) framework in simulating different parameters of both Data-Dependent and Data-Independent Acquisition (DDA and DIA) modes is a key advantage of this work. Researchers can easily explore and compare the performance of different acquisition methods within the ViMMS framework, without the need for expensive and time-consuming experiments with real experimental data. By identifying the strengths and limitations of each acquisition method, researchers can optimize their choice and obtain more accurate and robust results. Furthermore, the ability to simulate and validate results using the ViMMS framework can save significant time and resources, as it eliminates the need for numerous experiments. This work not only provides valuable insights into the performance of DDA and DIA, but it also opens the door for further advancements in LC-MS/MS data acquisition methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027714PMC
http://dx.doi.org/10.3389/fmolb.2023.1130781DOI Listing

Publication Analysis

Top Keywords

acquisition methods
16
vimms framework
16
dda dia
12
mass spectrometer
12
methods untargeted
8
untargeted metabolomics
8
data-dependent data-independent
8
data-independent acquisition
8
virtual metabolomics
8
metabolomics mass
8

Similar Publications

Background: New indicators of potential human immunodeficiency virus (HIV) transmission are being actively explored. We aim to categorical testing of the viral load (VL) of persons living with HIV (PLWH) in order to explore new indicators to measure the intensity of the epidemic and the effectiveness of the response in the community.

Methods: A dynamic cohort study was conducted in Yining to monitor the VL of all persons living with HIV from 2017 to 2019.

View Article and Find Full Text PDF

Post-dural puncture headache (PDPH) is a debilitating complication of neuraxial anesthesia, particularly prevalent in obstetric patients, usually characterized by a postural headache. PDPH is hypothesized to result from cerebrospinal fluid leakage through a dural puncture, triggering symptoms like neck stiffness and subjective hearing changes. While conservative measures are common for treatment, more refractory cases may require invasive interventions such as an epidural blood patch (EBP).

View Article and Find Full Text PDF

Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation.

View Article and Find Full Text PDF

Specific recognition mechanism of an antibody to sulfated tyrosine and its potential use in biological research.

J Biol Chem

January 2025

Department of Bioengineering, School of Engineering, The University of Tokyo; Institute of Medical Science, The University of Tokyo; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Japan. Electronic address:

Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency.

View Article and Find Full Text PDF

Enhance registration precision of transmission breast images utilizing improved Levenberg-Marquardt optimization algorithm with normalized cross-correlation.

Comput Biol Med

January 2025

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China. Electronic address:

Transmission imaging may become a possible advance for breast cancer screening with non-invasive, cost-effective, and radiation-free approaches for early detection. Frame accumulation can successfully eliminate the issue of low SNR, low grayscale and poor quality in transmission image. However, frame accumulation accuracy can be diminished because of inherent human body instability during image acquisition and the light absorption characteristics of breast tissue, resulting in distorted and misplaced image sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!