Ovarian cancer (OC) remains the most fatal disease of gynecologic malignant tumors. Angiogenesis refers to the development of new vessels from pre-existing ones, which is responsible for supplying nutrients and removing metabolic waste. Although not yet completely understood, tumor vascularization is orchestrated by multiple secreted factors and signaling pathways. The most central proangiogenic signal, vascular endothelial growth factor (VEGF)/VEGFR signaling, is also the primary target of initial clinical anti-angiogenic effort. However, the efficiency of therapy has so far been modest due to the low response rate and rapidly emerging acquiring resistance. This review focused on the current understanding of the in-depth mechanisms of tumor angiogenesis, together with the newest reports of clinical trial outcomes and resistance mechanism of anti-angiogenic agents in OC. We also emphatically summarized and analyzed previously reported biomarkers and predictive models to describe the prospect of precision therapy of anti-angiogenic drugs in OC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027942PMC
http://dx.doi.org/10.3389/fphar.2023.1147717DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
8
anti-angiogenic
4
anti-angiogenic therapy
4
therapy ovarian
4
cancer current
4
current understandings
4
understandings prospects
4
prospects precision
4
precision medicine
4
medicine ovarian
4

Similar Publications

REV7: a small but mighty regulator of genome maintenance and cancer development.

Front Oncol

January 2025

Department of Biology, Tufts University, Medford, MA, United States.

REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator.

View Article and Find Full Text PDF

Objective: Develop a predicting model that can help stratify patients with epithelial ovarian cancer (EOC) before platinum-based chemotherapy.

Methods: 148 patients with pathologically confirmed EOC and with a minimum 5-year follow-up were retrospectively enrolled. Patients were classified into platinum-sensitive and platinum-resistant groups according to treatment responses.

View Article and Find Full Text PDF

Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or mutation status.

View Article and Find Full Text PDF

Medroxyprogesterone acetate (MPA) is a promising fertility-sparing treatment for early stage endometrial cancer; however, it has a high recurrence rate and is inferior to surgery. Although the site of recurrence is mostly the endometrium, we here report a case of metastatic recurrence to the para-aortic lymph node with endometrial recurrence despite a careful follow-up. A 31-year-old woman was diagnosed with grade 1 endometrioid carcinoma, stage IA without myometrial invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!