A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A retrospective study of adjuvant proton radiotherapy for breast cancer after lumpectomy: a comparison of conventional-dose and hypofractionated dose. | LitMetric

Purpose: This study aimed to compare the adverse reactions of conventional-dose and hypofractionated dose of proton therapy for breast cancer.

Materials And Methods: Breast cancer patients treated with proton radiotherapy in conventional-dose or hypofractionated dose were studied retrospectively.

Result: From January 2017 to December 2019, our center treated 50 patients following lumpectomy with proton radiotherapy. According to the AJCC 8th Edition standard, there were stage I in 26 patients, stage II in 22 patients, and stage III in 2 patients. A total of 14 patients received intensity-modulated proton therapy at a dose of 50 Gy in 25 fractions, followed by a 10 Gy 4 fractionated boost to the lumpectomy cavity, while 36 received 40.05 Gy in 15 fractions, simultaneous integrated boost (SIB) 48 Gy to the lumpectomy cavity. Median follow-up time for 40.05 Gy group was 35.6 months (15-43 months). Median follow-up time for 50 Gy group was 46.8 months (36-68 months). For acute toxicity, the grade 1 and 2 radiodermatitis in conventional-dose group were 35.7% and 57.1%, respectively. In hypofractionated dose group, the grade 1 and 2 radiodermatitis were 91.7% and 8.3%, respectively. The radiodermatitis is hypofractionneted dose better than conventional-dose significantly. Grade 1 radiation-induced esophagitis in conventional-dose group and hypofractionated dose group were 85.71% and 60%, respectively. For late toxicity, no patients developed radiation-induced pneumonitis and rib fracture in conventional-dose group. Three patients presented grade 1 pneumonitis; one patient presented graded 2 pneumonitides and two patients presented rib fracture in hypofractionated dose group. One presented hypothyroidism in hypofractionated dose group. All patients were satisfied with breast shape. The one- and two-year OS and DFS for conventional-dose group were 100 and 100; 100 and 92.9%, respectively. The one- and two-year OS and DFS for hypofractionated dose group were 100 and 100; 100 and 100%, respectively.

Conclusion: Proton radiation therapy can significantly reduce the normal tissue dose in breast cancer patients' hearts, lungs, and other organs. Hypofractionated proton therapy shortens the treatment course with mild radiation-related adverse effects, and has a better effect on addressing the acute adverse reactions than conventional proton radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035215PMC
http://dx.doi.org/10.1186/s13014-023-02213-8DOI Listing

Publication Analysis

Top Keywords

hypofractionated dose
32
dose group
20
proton radiotherapy
16
conventional-dose group
16
100 100
16
breast cancer
12
conventional-dose hypofractionated
12
proton therapy
12
dose
11
group
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!