Background: Acute myocardial infarction (AMI) remains the leading cause of mortality worldwide. The majority of patients who suffer an AMI have a history of at least one of the standard modifiable risk factors (SMuRFs): smoking, hypertension, dyslipidemia, and diabetes mellitus. However, emerging scientific evidence recognizes a clinically significant and increasing proportion of patients presenting with AMI without any SMuRF (SMuRF-less patients). To date, there are no adequate data to define specific risk factors or biomarkers associated with the development of AMIs in these patients.
Methods: The ''Beyond-SMuRFs Study'' is a prospective, non-interventional cohort trial designed to enroll patients with AMI and no previous coronary intervention history, who undergo coronary angiography in two academic hospitals in Thessaloniki, Greece. The rationale of the study is to investigate potential relations between SMuRF-less AMIs and the clinical, laboratory and imaging profile of patients, by comparing parameters between patients with and without SMuRFs. Complete demographic and comprehensive clinical data will be recorded, Venous blood samples will be collected before coronary angiography and the following parameters will be measured: total blood count, standard biochemistry parameters, coagulation tests, hormone levels, glycosylated hemoglobin, N- terminal pro-B-type natriuretic peptide and high-sensitivity troponin T levels- as well as serum levels of novel atherosclerosis indicators and pro-inflammatory biomarkers. Furthermore, all participants will undergo a complete and comprehensive transthoracic echocardiographic assessment according to a pre-specified protocol within 24 h from admission. Among others, 2D-speckle-tracking echocardiographic analysis of cardiac chambers and non-invasive calculation of myocardial work indices for the left ventricle will be performed. Moreover, all patients will be assessed for angiographic parameters and the complexity of coronary artery disease using the SYNTAX score. Multivariable linear and logistic regression models will be used to phenotypically characterize SMuRF-less patients and investigate independent clinical, laboratory, echocardiographic and angiographic biomarkers-predictors of SMuRF-less status in AMI.The first patient was enrolled in March 2022 and completion of enrollment is expected until December 2023.
Discussion: The ''Beyond-SmuRFs'' study is an ongoing prospective trial aiming to investigate potential clinical, laboratory and imaging biomarkers associated with the occurrence of AMIs in SMuRF-less patients. The configuration of these patients' profiles could lead to the development of personalized risk-stratification models predicting the occurrence of cardiovascular events in SΜuRF-less individuals.
Trial Registration: ClinicalTrials.gov Identifier: NCT05535582 / September 10, 2022.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037837 | PMC |
http://dx.doi.org/10.1186/s12872-023-03180-4 | DOI Listing |
Pol J Vet Sci
December 2024
Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China. Email:
The aim of this study was to develop a rapid, sensitive and highly specific TaqMan quantitative real-time polymerase chain reaction PCR (qPCR) assay for porcine circovirus-like virus (PCLV). The primers and probe were designed based on the conserved regions of the PCLV ORF4 gene. The assay has a good detection performance (y=-3.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt.
Background: Metachromatic leukodystrophy (MLD) is an autosomal recessive hereditary neurodegenerative disease caused by a deficiency in arylsulfatase A (ARSA) activity and belongs to the group of lysosomal storage diseases. A biochemical diagnosis of MLD is based on determining the residual ARSA activity in leukocytes, skin fibroblasts, and urine. This study documents our biochemical experience and estimates the relative frequency of MLD over 21 years (2001-2022).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico.
Background: Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA.
This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!