The risk of cardiovascular disease (CVD) is a serious health threat to human society worldwide. The use of machine learning methods to predict the risk of CVD is of great relevance to identify high-risk patients and take timely interventions. In this study, we propose the XGBH machine learning model, which is a CVD risk prediction model based on key contributing features. In this paper, the generalisation of the model was enhanced by adding retrospective data of 14,832 Chinese Shanxi CVD patients to the kaggle dataset. The XGBH risk prediction model proposed in this paper was validated to be highly accurate (AUC = 0.81) compared to the baseline risk score (AUC = 0.65), and the accuracy of the model for CVD risk prediction was improved with the inclusion of the conventional biometric BMI variable. To increase the clinical application of the model, a simpler diagnostic model was designed in this paper, which requires only three characteristics from the patient (age, value of systolic blood pressure and whether cholesterol is normal or not) to enable early intervention in the treatment of high-risk patients with a slight reduction in accuracy (AUC = 0.79). Ultimately, a CVD risk score model with few features and high accuracy will be established based on the main contributing features. Of course, further prospective studies, as well as studies with other populations, are needed to assess the actual clinical effectiveness of the XGBH risk prediction model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036320 | PMC |
http://dx.doi.org/10.1038/s41598-023-31870-8 | DOI Listing |
Am J Emerg Med
January 2025
Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain; Emergency Department, Hospital Clínico Universitario, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain.
Background: The study of the inclusion of new variables in already existing early warning scores is a growing field. The aim of this work was to determine how capnometry measurements, in the form of end-tidal CO2 (ETCO2) and the perfusion index (PI), could improve the National Early Warning Score (NEWS2).
Methods: A secondary, prospective, multicenter, cohort study was undertaken in adult patients with unselected acute diseases who needed continuous monitoring in the emergency department (ED), involving two tertiary hospitals in Spain from October 1, 2022, to June 30, 2023.
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFJ Neurosurg Pediatr
January 2025
1Division of Neurosurgery, Department of Surgery, Children's Hospital of Philadelphia.
Objective: The natural history of cephaloceles is not well understood. The goal of this study was to better understand the natural history of fetal cephaloceles from prenatal diagnosis to the postnatal period.
Methods: Between January 2013 and April 2023, all patients evaluated with a cephalocele at the Center for Fetal Diagnosis and Treatment were identified.
PLoS One
January 2025
Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand.
Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27).
View Article and Find Full Text PDFClin Infect Dis
January 2025
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.
Background: Existing risk evaluation tools underperform in predicting intensive care unit (ICU) admission for patients with the Coronavirus Disease 2019 (COVID-19). This study aimed to develop and evaluate an accurate and calculator-free clinical tool for predicting ICU admission at emergency room (ER) presentation.
Methods: Data from patients with COVID-19 in a nationwide German cohort (March 2020-January 2023) were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!