Multiplexed detection of biomarkers in real-time is crucial for sensitive and accurate diagnosis at the point of use. This scenario poses tremendous challenges for detection and identification of signals of varying shape and quality at the edge of the signal-to-noise limit. Here, we demonstrate a robust target identification scheme that utilizes a Deep Neural Network (DNN) for multiplex detection of single particles and molecular biomarkers. The model combines fast wavelet particle detection with Short-Time Fourier Transform analysis, followed by DNN identification on an AI-specific edge device (Google Coral Dev board). The approach is validated using multi-spot optical excitation of Klebsiella Pneumoniae bacterial nucleic acids flowing through an optofluidic waveguide chip that produces fluorescence signals of varying amplitude, duration, and quality. Amplification-free 3× multiplexing in real-time is demonstrated with excellent specificity, sensitivity, and a classification accuracy of 99.8%. These results show that a minimalistic DNN design optimized for mobile devices provides a robust framework for accurate pathogen detection using compact, low-cost diagnostic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034896PMC
http://dx.doi.org/10.1038/s41598-023-31694-6DOI Listing

Publication Analysis

Top Keywords

pathogen detection
8
signals varying
8
detection
6
machine learning
4
learning edge
4
edge ai-enabled
4
ai-enabled multiplexed
4
multiplexed pathogen
4
detection multiplexed
4
multiplexed detection
4

Similar Publications

The study examines the chemical composition and antimicrobial properties of petroleum ether and hydro-methanolic extracts of Achillea santolina(A. santolina)  from Algeria. Chemical profiling was performed using High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) for the hydro-methanolic extract and Gas Chromatography-Mass Spectrometry (GC-MS) for the petroleum ether extract.

View Article and Find Full Text PDF

Mammarenaviruses are noteworthy zoonotic pathogens, and the main reservoirs are rodent species. We report the detection of a novel mammarenavirus in 6/183 (3.3%) in necropsied European hedgehogs (Erinaceus europaeus) collected in Italy.

View Article and Find Full Text PDF

Hypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening infections in healthy community members. HvKp infections often involve multiple sites, some of which are unusual for classical K. pneumoniae (cKp) infections, such as the central nervous system, eyes, and fascia.

View Article and Find Full Text PDF

Because of the urgent need for new antibiotics to treat drug-resistant bacterial pathogens, we employed an assay that rapidly screens large quantities of compounds for their ability to interfere with bacterial protein synthesis, in particular, the delivery of amino acids to the ribosome via tRNA and elongation factor Tu (EF-Tu). We have identified a drug lead, named MGC-10, which kills Gram-positive bacteria, including methicillin-resistant (MRSA), with a MIC of 6 µM, while being harmless to mammalian cells in that concentration range. The antibacterial activity of MGC-10 was broad against over 50 strains of antibiotic-resistant samples obtained from hospital infections, where MGC-10 inhibited all tested strains of MRSA.

View Article and Find Full Text PDF

Unlabelled: The BioFire FilmArray meningitis/encephalitis panel (MEP) was brought to the University of Kentucky in 2016 to aid in the identification of community-acquired meningitis and encephalitis (ME). This panel has shown variable performance with some institutions showing high sensitivity and specificity for many pathogens but others seeing false positives during clinical use. We evaluated the panel's performance using retrospective chart review of patients at the University of Kentucky from October 2016 to September 2022, including 7,551 MEP results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!