Plasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid-host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear. Here, we show a substantial fitness cost of carrying the large conjugative plasmid pQBR103 in Pseudomonas fluorescens SBW25 in the plant rhizosphere. This plasmid fitness cost could be ameliorated by compensatory mutations affecting the chromosomal global regulatory system gacA/gacS, which arose rapidly in plant rhizosphere communities and were exclusive to plasmid carriers. These findings expand our understanding of the importance of compensatory evolution in plasmid dynamics beyond simplified lab media. Compensatory mutations contribute to plasmid survival in bacterial populations living within complex microbial communities in their environmental niche.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062694 | PMC |
http://dx.doi.org/10.1093/femsec/fiad027 | DOI Listing |
Emerg Microbes Infect
December 2024
Institute of Virology, Philipps-Universität Marburg, 35043 Marburg, Germany.
Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region.
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria.
Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγ) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations.
View Article and Find Full Text PDFExp Cell Res
December 2024
Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China. Electronic address:
Aurora kinase B (AURKB) was reported to assist Aurora kinase A (AURKA) to regulate cellular mitosis. AURKA has been found activated in myeloproliferative neoplasms (MPNs) patients with CALR gene mutation, however, it's unclear whether AURKB displays a compensatory function of AURKA in regulation of CALR mutant cell growth and differentiation. Here, we found that AURKB, similar with AURKA, was aberrantly activated in CALR mutant patients, and displayed a more tolerance to the aurora kinase inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!