Warming and nutrient enrichment can trigger seaweed loss by dysregulation of the microbiome structure and predicted function.

Sci Total Environ

NBFC, National Biodiversity Future Center, Palermo 90133, Italy; Chioggia Hydrobiological Station "Umberto D'Ancona", Department of Biology, UO CoNISMa, University of Padova, Chioggia, Italy. Electronic address:

Published: June 2023

Warming and nutrient enrichment are key pervasive drivers of ecological shifts in both aquatic and terrestrial ecosystems, impairing the physiology and survival of a wide range of foundation species. But the underlying mechanisms often remain unclear, and experiments have overlooked the potential effects mediated by changes in the microbial communities. We experimentally tested in the field orthogonal stress combinations from simulated air warming and nutrient enrichment on the intertidal foundation seaweed Cystoseira compressa, and its associated bacterial communities. A total of 523 Amplicon Sequence Variance (ASVs) formed the bacterial community on C. compressa, with 222 ASVs assigned to 69 taxa at the genus level. Most bacteria taxa experienced changes in abundance as a result of additive (65 %) and antagonistic (30 %) interactions between the two stressors, with synergies (5 %) occurring less frequently. The analysis of the predicted bacterial functional profile identified 160 metabolic pathways, and showed that these were mostly affected by additive interactions (74 %) between air warming and nutrient enrichment, while antagonisms (20 %) and synergisms (6 %) were less frequent. Overall, the two stressors combined increased functions associated with seaweed disease or degradation of major cell-wall polymers and other algicidal processes, and decreased functions associated with Quorum Quenching and photosynthetic response. We conclude that warming and nutrient enrichment can dysregulate the microbiome of seaweeds, providing a plausible mechanism for their ongoing loss, and encourage more research into the effects of human impacts on crucial but yet largely unstudied host-microbiome relationships in different aquatic and terrestrial species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162919DOI Listing

Publication Analysis

Top Keywords

warming nutrient
20
nutrient enrichment
20
aquatic terrestrial
8
air warming
8
functions associated
8
warming
5
enrichment
5
enrichment trigger
4
trigger seaweed
4
seaweed loss
4

Similar Publications

Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities.

Mar Environ Res

January 2025

Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Plankton communities are subjected to multiple global change drivers; however, it is unknown how the interplay between them deviates from predictions based on single-driver studies, in particular when trophic interactions are explicitly considered. We investigated how simultaneous manipulation of temperature, pH, nutrient availability and solar radiation quality affects the carbon transfer from phytoplankton to herbivorous protists and their potential consequences for ecosystem functioning. Our results showed that multiple interacting global-change drivers reduced the photosynthetic (gross primary production-to-electron transport rates ratios, from 0.

View Article and Find Full Text PDF

Effect of Warming on Soil Fungal Community Along Altitude Gradients in a Subalpine Meadow.

Microorganisms

December 2024

School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.

The subalpine grassland ecosystem is sensitive to climatic changes. Previous studies investigated the effects of warming on grassland ecosystems at a single altitude, with little information about the response of subalpine meadows to warming along altitude gradients. This study aimed to evaluate the effects of warming on aboveground grass, belowground soil properties, and fungal community along altitude gradients in the subalpine meadow of Mount Wutai using the high-throughput sequencing method.

View Article and Find Full Text PDF

Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.

View Article and Find Full Text PDF

Alpine wet meadows are known as NO sinks due to nitrogen (N) limitation. However, phosphate addition and N deposition can modulate this limitation, and little is known about their combinative effects on NO emission from the Qinghai-Tibet Plateau in wet meadows. This study used natural wet meadow as the control treatment (CK) and conducted experiments with N (CONH addition, N15), P (NaHPO addition, P15), and their combinations (CONH and NaHPO addition, N15P15) to investigate how N and P supplementation affected soil NO emissions in wet meadow of QTP.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!