Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Extreme climate events including heat waves and droughts are projected to become more frequent under future climate change conditions. However, the mechanisms between soybean yields and climate factors, specifically involving variable rainfall and high heat episodes, are still unclear, particularly with respect to spatial trends in the United States (US) Midwest. A recently modified version of the model GLYCIM was used to evaluate rainfed soybean production across 12 states at a 10 km spatial resolution for three time periods (2011-2020, 2051-2060, 2091-2099) under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5. Results showed that except for the northernmost Midwest counties, most of the current rainfed cropping system in the Midwest would suffer a 24.6-47.4 % yield loss without considering the CO fertility effect. Incorporating the effect of elevated CO showed a smaller yield loss of 11.6-29.5 %. The increased frequency of extreme degree days (EDD) or accumulation of hourly temperatures above 30 °C associated with increased vapor pressure deficit (VPD) played a key role in contributing to water deficits and resultant crop losses under these future climate conditions. Although a relatively weak relationship between summer rainfall and crop yield was observed, decreased rainfall caused VPD to increase which induced crop water deficits. These findings suggest that it is crucial to consider VPD along with high temperature and low rainfall trends simultaneously for development of potential management or breeding-based adaptative strategies for soybean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162960 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!