The molecular mechanisms underlying the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and Huntington's disease remain enigmatic, resulting in an unmet need for therapeutics development. Here, we suggest that filbertone, a key flavor compound found in the fruits of hazel trees of the genus Corylus, can ameliorate PD via lowering the abundance of aggregated α-synuclein. We previously reported that inhibition of hypothalamic inflammation by filbertone is mediated by suppression of nuclear factor kappa-B. Here, we report that filbertone activates PERK through mitochondrial reactive oxygen species production, resulting in the increased nuclear translocation of transcription factor-EB in SH-SY5Y human neuroblastoma cells. TFEB activation by filbertone promotes the autophagy-lysosomal pathway, which in turn alleviates the accumulation of α-synuclein. We also demonstrate that filbertone prevented the loss of dopaminergic neurons in the substantia nigra and striatum of mice on high-fat diet. Filbertone treatment also reduced high-fat diet-induced α-synuclein accumulation through upregulation of the autophagy-lysosomal pathway. In addition, filbertone improved behavioral abnormalities (i.e., latency time to fall and decrease of running distance) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD murine model. In conclusion, filbertone may show promise as a potential therapeutic for neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2023.109325 | DOI Listing |
J Cell Physiol
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy.
View Article and Find Full Text PDFMol Cells
December 2024
Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor impairments and the accumulation of misfolded α-synuclein. Dysregulation of the autophagy-lysosomal pathway (ALP), responsible for degrading misfolded proteins, has been implicated in PD pathogenesis. However, current diagnostic approaches rely heavily on motor symptoms, which occur due to substantial neurodegeneration, limiting early detection and intervention.
View Article and Find Full Text PDFJ Biol Chem
December 2024
The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The Joint National Laboratory of Antibody Drug Engineering, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China. Electronic address:
Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, AMD and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear.
View Article and Find Full Text PDFJCI Insight
December 2024
Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy-lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly CKD patients remains unknown.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel.
Ageing is a complex yet universal and inevitable degenerative process that results in a decline in the cellular capacity for repair and adaptation to external stresses. Therefore, maintaining the appropriate balance of the cellular proteome is crucial. In addition to the ubiquitin-proteasome and autophagy-lysosomal systems, molecular chaperones play a vital role in a sophisticated protein quality control system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!