Activation of immune cells is an essential process in innate and adaptive immunity. A high number of immune cell activation pathways have been discovered, which are stimulated via various intra- and extracellular receptors. Small-molecule and macromolecular agonists have been identified to target immune receptors in preclinical research and clinical practice. However, current immunostimulants are often associated with undesired side effects and/or low potency in vivo. These two issues have been addressed with multiscale biomaterials. In this review, we summarize and discuss the most explored intra/extracellular immune receptors which have been targeted with immunoactivating biomaterials. To target intracellular immune receptors, nano/microscale materials have been employed to deliver agonists into the endo/lysosomes or the cytoplasm. To target surface immune receptors, nano-to-macroscale biomaterials have been engineered to engage with them to activate immune cells. In this context, biomaterials are not only the drug carriers, but also function as part of the immunostimulants. The biomaterials-based modalities have shown clearly enhanced immunoactivation potency and decreased side effects compared to native immunostimulants. It is envisaged that nano-to-macroscale biomaterials will greatly contribute to the development of more effective strategies for immunoactivation, which have the potential to reshape future vaccination and immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.03.028 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.
Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.
View Article and Find Full Text PDFAnn Rheum Dis
January 2025
Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany, Erlangen, Germany. Electronic address:
Objectives: CD19-targeting chimeric antigen receptor (CAR) T-cell therapy can induce long-term drug-free remission in patients with autoimmune diseases (AIDs). The efficacy of CD19-CAR T-cell therapy is presumably based on deep tissue depletion of B cells; however, such effect has not been proven in humans in vivo.
Methods: Sequential ultrasound-guided inguinal lymph node biopsies were performed at baseline and after CD19-CAR T-cell therapy in patients with AIDs.
Reproduction
January 2025
H Ka, Biological Science and Technology, Yonsei University - Mirae Campus, Wonju, Korea (the Republic of).
To successfully establish and maintain pregnancy in pigs, a variety of factors must work together at the maternal-conceptus interface to form an immune environment appropriate for both the mother and the conceptus. Our transcriptomics study has shown that cluster of differentiation ligand 40 (CD40L) and its receptor CD40, which are known to play important roles in regulating cell- and antibody-mediated immunity, are expressed in the endometrium during early pregnancy. However, the roles of the CD40L and CD40 signaling system are not well understood.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Nephrology Division, Department of Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD) and abdominal surgeries, yet effective treatments remain elusive. Given the known roles of mucosal-associated invariant T (MAIT) cells in immune responses and fibrotic diseases, we investigated their involvement in PD-induced peritoneal fibrosis to identify potential therapeutic targets.
Methods: We employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to characterize the activation and function of peritoneal MAIT cells in patients undergoing long-term PD.
Mol Divers
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!