Sensitive SARS-CoV-2 salivary antibody assays for clinical saline gargle samples using smartphone-based competitive particle immunoassay platforms.

Biosens Bioelectron

Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States. Electronic address:

Published: June 2023

Antibody assay for SARS-CoV-2 has become increasingly important to track latent and asymptomatic infections, check the individual's immune status, and confirm vaccine efficacy and durability. However, current SARS-CoV-2 antibody assays require invasive blood collection, requiring a remote laboratory and a trained phlebotomist. Direct detection of SARS-CoV-2 antibodies from clinical saline gargle samples has been considered challenging due to the smaller number of antibodies in such specimens and the high limit of detection of currently available rapid tests. This work demonstrates simple and non-invasive methods for detecting SARS-CoV-2 salivary antibodies. Competitive particle immunoassays were developed on a paper microfluidic chip using the receptor-binding domain (RBD) antigens on spike proteins. Using a smartphone, they were monitored by counting the captured fluorescent particles or evaluating the capillary flow velocities. The limit of detection (LOD), cross-binding between alpha- and omicron-strains, and the effect of angiotensin-converting enzyme 2 (ACE2) presence were investigated. LODs were 1-5 ng/mL in both 10% and 1% saliva. Clinical saline gargle samples were assayed using both methods, showing a statistical difference between virus-negative and virus-positive samples, although the assays targeted antibodies. Only a small number of virus-positive samples were antibody-negative. The high assay sensitivity detected a small number of antibodies developed even during the early phase of infections. Overall, this work demonstrates the ability to detect SARS-CoV-2 salivary IgG antibodies on simple, cost-effective, portable platforms towards mitigating SARS-CoV-2 and potentially other respiratory viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008095PMC
http://dx.doi.org/10.1016/j.bios.2023.115221DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 salivary
12
clinical saline
12
saline gargle
12
gargle samples
12
antibody assays
8
competitive particle
8
number antibodies
8
limit detection
8
work demonstrates
8
virus-positive samples
8

Similar Publications

Objective: With altered sense of taste being a common symptom of coronavirus disease 2019 (COVID-19), the main objective was to investigate the presence and distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within the tongue over the course of infection.

Methods: Golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 and tongues were collected at 2, 3, 5, 8, 17, 21, 35, and 42 days post-infection (dpi) for analysis. In order to test for gross changes in the tongue, the papillae of the tongue were counted.

View Article and Find Full Text PDF

SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.

View Article and Find Full Text PDF

4D-DIA Proteomics Uncovers New Insights into Host Salivary Response Following SARS-CoV-2 Omicron Infection.

J Proteome Res

January 2025

PPGEMN, School of Engineering, Mackenzie Presbyterian University & MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São Paulo 01302-907, Brazil.

Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.

View Article and Find Full Text PDF

Background And Objectives: The optimal iron hypothesis (OIH) posits that risk for infection is lowest at a mild level of iron deficiency. The extent to which this protection results from arms race dynamics in the evolution of iron acquisition and sequestration mechanisms is unclear. We evaluated the OIH with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging infectious agent.

View Article and Find Full Text PDF

Background/objectives: Salivary immunoglobulin A (IgA) is a mediator of local immunity and host defence. Altered IgA levels may predispose to bacterial invasion of the mucosa in the gastrointestinal tract, including the oral cavity. Our study aimed to present the diagnostic trends related to salivary IgA in health and disease based on a bibliometric analysis of published papers between 2009 and 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!