The central nucleus of the amygdala (CeA) is a key brain region involved in emotional and stressor responses due to its many projections to autonomic regulatory centers. It is also a primary site of action from ethanol consumption. However, the influence of active metabolites of ethanol such as acetate on the CeA neural circuitry has yet to be elucidated. Here, we investigated the effect of acetate on CeA neurons with the axon projecting to the rostral ventrolateral medulla (CeA-RVLM), as well as quantified cytosolic calcium responses in primary neuronal cultures. Whole-cell patch-clamp recordings in brain slices containing autonomic CeA-RVLM neurons revealed a dose-dependent increase in neuronal excitability in response to acetate. -Methyl-d-aspartate receptor (NMDAR) antagonists suppressed the acetate-induced increase in CeA-RVLM neuronal excitability and memantine suppressed the direct activation of NMDAR-dependent inward currents by acetate in brain slices. We observed that acetate increased cytosolic Ca in a time-dependent manner in primary neuronal cell cultures. The acetate enhancement of calcium signaling was abolished by memantine. Computational modeling of acetic acid at NMDAR/NR1 glutamatergic and glycinergic sites suggests potential active site interactions. These findings suggest that within the CeA, acetate is excitatory at least partially through activation of NMDAR, which may underlie the impact of ethanol consumption on autonomic circuitry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163875PMC
http://dx.doi.org/10.1021/acschemneuro.2c00784DOI Listing

Publication Analysis

Top Keywords

acetate
8
central nucleus
8
nucleus amygdala
8
ethanol consumption
8
acetate cea
8
primary neuronal
8
brain slices
8
neuronal excitability
8
ethanol
4
ethanol metabolite
4

Similar Publications

Background And Objectives: The most effective antiseizure medications (ASMs) for poststroke seizures (PSSs) remain unclear. We aimed to determine outcomes associated with ASMs in people with PSS.

Methods: We systematically searched electronic databases for studies on patients with PSS on ASMs.

View Article and Find Full Text PDF

Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring.

Adv Sci (Weinh)

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.

Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands.

View Article and Find Full Text PDF

Introduction: Dysmenorrhea is a painful symptom associated with uterine contractions and menstrual bleeding and is treated by administering analgesic drugs. Since progesterone receptors (PRs) have a major role in regulating uterine tissues (myometrium and endometrium) oral contraceptives are used off-label for treating primary or secondary dysmenorrhea. The development of selective progesterone receptor modulators (SPRMs) a class of synthetic steroids with agonistic, antagonistic, or mixed effects in targeting PRs in different tissues stimulated their possible clinical use for treating secondary dysmenorrhea related to uterine diseases (endometriosis, adenomyosis, uterine fibroids).

View Article and Find Full Text PDF

A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine.

J Mol Model

January 2025

Sorbonne Université, CNRS, "De la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies", MONARIS, UMR 8233, 4 Place Jussieu, Paris, 75005, France.

Context: A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.

View Article and Find Full Text PDF

Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth.

Int Microbiol

January 2025

Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.

Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!