Positionally ordered bilayer liquid crystalline nanostructures formed by gapped DNA (GDNA) constructs provide a practical window into DNA-DNA interactions at physiologically relevant DNA concentrations; concentrations several orders of magnitude greater than those in commonly used biophysical assays. The bilayer structure of these states of matter is stabilized by end-to-end base stacking interactions; moreover, such interactions also promote in-plane positional ordering of duplexes that are separated from each other by less than twice the duplex diameter. The end-to-end stacked as well as in-plane ordered duplexes exhibit distinct signatures when studied via small-angle X-ray scattering (SAXS). This enables analysis of the thermal stability of both the end-to-end and side-by-side interactions. We performed synchrotron SAXS experiments over a temperature range of 5-65 °C on GDNA constructs that differ only by the terminal base-pairs at the blunt duplex ends, resulting in identical side-by-side interactions, while end-to-end base stacking interactions are varied. Our key finding is that bilayers formed by constructs with GC termination transition into the monolayer state at temperatures as much as 30 °C higher than for those with AT termination, while mixed (AT/GC) terminations have intermediate stability. By modeling the bilayer melting in terms of a temperature-dependent reduction in the average fraction of end-to-end paired duplexes, we estimate the stacking free energies in DNA solutions of physiologically relevant concentrations. The free-energies thereby determined are generally smaller than those reported in single-molecule studies, which might reflect the elevated DNA concentrations in our studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078606PMC
http://dx.doi.org/10.1021/acs.langmuir.3c00318DOI Listing

Publication Analysis

Top Keywords

end-to-end base
12
base stacking
12
stacking interactions
12
stability end-to-end
8
dna solutions
8
gdna constructs
8
physiologically relevant
8
dna concentrations
8
side-by-side interactions
8
interactions
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!