Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanistic understanding of asymmetric induction plays a crucial role in designing new catalytic asymmetric reactions. Reported herein is atroposelective access to C-N axially chiral isoquinolones via rhodium-catalyzed C-H activation of -alkoxy benzamides and annulation with imidoyl sulfoxonium ylides. The coupling system proceeded with excellent functional group tolerance, and different conditions were identified to afford one or the other enantiomeric product each in excellent enantioselectivity for a representative class of the sulfoxonium ylide reagent, thus making both enantiomers readily available using the same catalyst. Experimental and computational studies revealed a pathway of C-H alkylation and enantio-determining formal nucleophilic substitution-C-N cyclization that is mediated by the rhodium catalyst via σ-bond metathesis as the asymmetric induction mechanism. Computational studies indicated that the solvent-dependent enatiodivergence originated from different levels of σ-bond metathesis mediated by neutral versus cationic rhodium species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c00003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!