Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the visual critical period (CP), sensory experience refines the structure and function of visual circuits. The basis of this plasticity was long thought to be limited to cortical circuits, but recently described thalamic plasticity challenges this dogma and demonstrates greater complexity underlying visual plasticity. Yet how visual experience modulates thalamic neurons or how the thalamus modulates CP timing is incompletely understood. Using a larval zebrafish, thalamus-centric ocular dominance model, we show functional changes in the thalamus and a role of inhibitory signaling to establish CP timing using a combination of functional imaging, optogenetics, and pharmacology. Hemisphere-specific changes in genetically defined thalamic neurons correlate with changes in visuomotor behavior, establishing a role of thalamic plasticity in modulating motor performance. Our work demonstrates that visual plasticity is broadly conserved and that visual experience leads to neuron-level functional changes in the thalamus that require inhibitory signaling to establish critical period timing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514242 | PMC |
http://dx.doi.org/10.1016/j.celrep.2023.112287 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!