Purpose: Patients with X-linked hypophosphatemic rickets (XLH) often develop coronal plane knee deformities despite medical treatment. Hemiepiphysiodesis is an effective way to correct coronal plane knee deformities in skeletally immature patients, but a full understanding of the rate of angular correction after hemiepiphysiodesis in XLH patients, compared with idiopathic cases is lacking.

Methods: We retrospectively reviewed charts of 24 XLH patients and 37 control patients without metabolic bone disease who underwent hemiepiphysiodesis. All patients were treated with standard-of-care medical therapy (SOC=active vitamin D and phosphate salt supplementation) in our clinical research center and had a minimum of 2-year follow-up after hemiepiphysiodesis. Demographic data as well as complications, repeat procedures, or recurrence/overcorrection were recorded. Standing lower extremity radiographs were evaluated before the surgical intervention and at subsequent hardware removal or skeletal maturity, whichever came first. Mean axis deviation, knee zone, mechanical lateral distal femoral angle (mLDFA), and medial proximal tibial angle were measured on each radiograph. The rate of angular correction was calculated as the change in mLDFA and medial proximal tibial angle over the duration of treatment.

Results: The magnitude of the initial deformity of the distal femur was greater in XLH patients as compared with control for varus (XLH mLDFA 97.7 +/- 4.9 vs. Control mLDFA 92.0 +/- 2.0 degrees) and valgus (XLH mLDFA 78.7 +/- 6.2 vs. Controls mLDFA 83.6 +/- 3.2 degrees). The rate of correction was dependent on age. When correcting for age, XLH patients corrected femoral deformity at a 15% to 36% slower rate than control patients for the mLDFA (>3 y growth remaining XLH 0.71 +/- 0.46 vs. control 0.84 +/- 0.27 degrees/month, <3 y growth remaining XLH 0.37 +/- 0.33 vs. control 0.58 +/- 0.41 degrees/month). No significant differences were seen in the rate of proximal tibia correction. XLH patients were less likely to end treatment in zone 1 (55.0% XLH vs. 77.8% control). XLH patients had longer treatment times than controls (19.5 +/- 10.7 vs. 12.6 +/- 7.0 mu, P value <0.001), a higher average number of secondary procedures than controls (1.33 +/- 1.44 vs. 0.62 +/- 0.92 number of procedures), a higher rate of overcorrection than controls (29.2% vs. 5.4%), and a higher rate of subsequent corrective osteotomy than controls (37.5% vs. 8.1%). There was no significant difference in the rate of complications between groups (8.3% vs. 5.4%).

Conclusions: Patients with XLH undergoing hemiepiphysiodesis have a 15% to 36% slower rate of femoral deformity correction that results in longer treatment times, a higher likelihood to undergo more secondary procedures, and a lower likelihood to reach neutral mechanical alignment.

Significance: This study provides important information to guide the timing and treatment of patients with XLH and coronal plane knee deformities. In addition, results from this study can be educational for families and patients with respect to anticipated treatment times, success rates of the procedure, complication rate, and likelihood of needing repeat procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BPO.0000000000002393DOI Listing

Publication Analysis

Top Keywords

xlh patients
16
angular correction
12
patients
10
correction hemiepiphysiodesis
8
hemiepiphysiodesis patients
8
patients x-linked
8
x-linked hypophosphatemic
8
hypophosphatemic rickets
8
xlh
8
coronal plane
8

Similar Publications

Objective: To examine the evidence addressing the management of X-linked hypophosphatemia (XLH) in children to inform treatment recommendations.

Methods: We searched Embase, MEDLINE, Web of Science, and Cochrane Central up to May 2023. Eligible studies included RCTs and observational studies of individuals less than 18yrs with clinically or genetically confirmed XLH.

View Article and Find Full Text PDF

Objective: To examine the highest certainty evidence addressing the management of X-linked hypophosphatemia (XLH) in adults to inform treatment recommendations.

Methods: We searched Embase, MEDLINE, Web of Science, and Cochrane Central up to May 2023. Eligible studies included RCTs and observational studies of individuals 18+ with clinically or genetically confirmed XLH.

View Article and Find Full Text PDF

Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown.

View Article and Find Full Text PDF

Background: X-linked hypophosphatemic rickets (XLH) is associated with uninhibited FGF23 activity, which leads to phosphaturia, hypophosphatemia and depressed active vitamin D (1,25OH2D) levels. Conventional treatment with phosphate supplements and vitamin D analogs may lead to hypercalciuria (HC), nephrocalcinosis (NC) and hyperparathyroidism. We investigated the effects of burosumab treatment, an anti-FGF23 monoclonal antibody recently approved for XLH, on these complications.

View Article and Find Full Text PDF

X-linked hypophosphatemic rickets (XLH), the most common form of hereditary rickets, is characterized by renal phosphate wasting and abnormal vitamin D metabolism due to elevated circulating levels of the phosphatonin fibroblast growth factor 23 (FGF23). Dominant inactivating variants of the phosphate regulating endopeptidase homolog, X-linked (), gene are present in patients with XLH, and more than half of affected patients carry de novo variants. We report on 3 families in whom affected members had highly unusual pathogenic variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!