Purpose: To investigate if viable stem cells could be isolated and expanded from cryopreserved microfragmented adipose tissue (AT) harvested from patients with knee osteoarthritis.
Methods: Microfragmented abdominal AT from knee osteoarthritis patients was cryopreserved at -80 °C in cryoprotectant-medium. The samples were thawed for stem cell isolation by tissue explant culture (TEC) and enzymatic digestion (ED), respectively. Viability, population doublings, and doubling time were assessed by trypan blue staining and flow cytometry. Cell type and senescence-associated β-galactosidase activity were analyzed by flow cytometry. Osteogenic and adipogenic differentiation was assessed quantitatively by Alizarin-Red-S and Oil-Red-O staining, respectively.
Results: Microfragmented AT from 7 patients was cryopreserved for a period of 46-150 days (mean (SD) 115.9 days (44.3 days)). Viable stem cells were successfully recovered and expanded from all patients using both isolation methods with no significant difference in viable population doublings or doubling time from passage 1 to 3 (p > 0.05). Low levels of senescence-associated β-galactosidase activity was detected for both methods with no significant difference between TEC and ED (p = 0.17). Stemness was verified by stem cell surface markers and osteogenic and adipogenic differentiation performance. Adventitial stem cells (CD31CD34CD45CD90CD146), pericytes (CD31CD34CD45CD90CD146), transitional pericytes (CD31CD34CD45CD90CD146), and CD271 stem cells (CD31CD45CD90CD271) were identified using both methods. More pericytes were present when using TEC (25% (24%)) compared to ED (3% (2%)) at passage 4 (p = 0.04).
Conclusions: Viable stem cells can be isolated and expanded from cryopreserved microfragmented AT using both TEC and ED. TEC provides more clinically relevant pericytes than ED.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036689 | PMC |
http://dx.doi.org/10.1186/s40634-023-00596-x | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Clinical Research Center of the Carolinas, Charleston, South Carolina, USA.
Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.
Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!