Wastewater-based epidemiology (WBE) for quantification of illicit drug biomarkers (IDBs) in wastewater samples is an effective tool that can provide information about drug consumption. The most commonly quantified IDBs belong to different chemical classes, including cocaine, amphetamine-type stimulants, opioids, and cannabinoids, so the different chemical properties of these molecules pose a challenge in the development of analytical methods for multi-analyte analysis. Recent workflows include the steps of sampling and storage, sample preparation using solid-phase extraction (SPE) or without extraction, and quantification of analytes employing gas or liquid chromatography coupled with mass spectrometry. The greatest difficulty is due to the fact that wastewater samples are complex chemical mixtures containing analytes with different chemical properties, often present at low concentrations. Therefore, in the development of analytical methods, there is the need to simplify and optimize the analytical workflows, reducing associated uncertainties, analysis times, and costs. The present work provides a critical bibliographic survey of studies published from the year 2020 until now, highlighting the challenges and trends of published analytical workflows for the multi-analysis of IDBs in wastewater samples, considering sampling and sample preparation, method validation, and analytical techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034891 | PMC |
http://dx.doi.org/10.1007/s00216-023-04644-4 | DOI Listing |
Talanta
December 2024
Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents.
View Article and Find Full Text PDFEnviron Pollut
December 2024
São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil. Electronic address:
Unsafe water has severe implications for human health. Among sanitary wastewater treatment technologies, those that treat effluent in the most natural way possible (avoiding chemicals) need to be employed to minimize environmental damage upon release. Microalgae-based systems are one of the more economical and sustainable methods.
View Article and Find Full Text PDFChemosphere
December 2024
Bursa Technical University, Department of Environmental Engineering, Bursa, Türkiye. Electronic address:
The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil.
Indigo is a widely used colorant available from natural and synthetic origin. It is practically insoluble in water. Indigo can reach aquatic sediments through wastewater discharges from dyeing processes, terrestrial compartments from the treatment sludges used as biosolids and dyed textiles disposed in landfills.
View Article and Find Full Text PDFTalanta
December 2024
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China. Electronic address:
The proliferation of micro/nanoplastics (MNPs) has emerged as a pivotal environmental issue, largely due to their potential for human exposure. Consequently, the development of sensitive and efficient detection methodologies is paramount for elucidating their environmental footprint. Here, we report a novel three-dimensional (3D) surface-enhanced Raman scattering (SERS) sensor, which integrate TiCT/TiO/WO semiconductor heterostructure, for the rapid and sensitive detection of MNPs in environmental matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!